Dietary Myrtle (*Myrtus communis* L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (*Oncorhynchus mykiss*) fingerlings

Hadis Mansouri Taei, Abdolmajid Hajimoradloo, Seyed Hossein Hoseinifar, Hassan Ahmadvand

PII: S1050-4648(17)30162-6
DOI: 10.1016/j.fsi.2017.03.034
Reference: YFSIM 4503

To appear in: *Fish and Shellfish Immunology*

Received Date: 19 January 2017
Revised Date: 15 March 2017
Accepted Date: 17 March 2017

Please cite this article as: Mansouri Taei H, Hajimoradloo A, Hoseinifar SH, Ahmadvand H, Dietary Myrtle (*Myrtus communis* L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (*Oncorhynchus mykiss*) fingerlings, *Fish and Shellfish Immunology* (2017), doi: 10.1016/j.fsi.2017.03.034.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Dietary Myrtle (Myrtus communis L.) improved non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (Oncorhynchus mykiss) fingerlings

Running head: Myrtle effects on mucosal immune response

Hadis Mansouri Taei a*, Abdolmajid Hajimoradloo a*, Seyed Hossein Hoseinifar a, Hassan Ahmadvand b,

a* Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

b Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khoram Abad-Iran

*Authors for correspondence:

A Hajimoradloo and H Mansouri Taei, Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

E-mail address: ahajimoradloo@yahoo.com; mansouritaee@gau.ac.ir
Summary

The present study examined the effects of dietary Myrtle (*Myrtus communis* L.) on non-specific immune parameters and bactericidal activity of skin mucus in rainbow trout (*Oncorhynchus mykiss*) fingerlings. Three hundred and sixty fingerlings (6.50 ± 0.55 g) were distributed in twelve cages (65 × 65 × 65 cm) with a metal framework. The study included four treatments repeated in triplicates. The treatments were feeding trouts with experimental diets containing different levels (0, 0.5, 1 and 1.5%) of Myrtle powder. The fingerlings were fed on experimental diet for sixty days and then skin mucus non-specific immune parameters as well as bactericidal activity were measured. At the end of the trial, the highest skin mucus soluble protein level was observed in group fed with 1.5% Myrtle (*P* < 0.05). The alkaline phosphatase (ALP) activity was significantly increased in fish groups fed 1 and 1.5% Myrtle compared with the control group (*P* < 0.05). However, evaluation of skin mucus lysozyme activity showed no significant difference between treatments and control group (*P* > 0.05). Also, no antibacterial activity was detected against *Escherichia coli*, *Staphylococcus aureus* and *Salmonella enterica* in all treatments and control group. Whereas skin mucus of rainbow trout showed antimicrobial activity against fish pathogens (*Aeromonas hydrophila* and *Yersinia ruckeri*) in 1 and 1.5% Myrtle treatments. These results indicated beneficial effects of dietary Myrtle on mucosal immune parameters of fingerling rainbow trout.

Keywords: Rainbow trout, Myrtle, mucosal immunity, non-specific immunity, Skin, Bactericidal activity

Introduction

In the aquatic environment, fish consistently faces with pathogenic and non-pathogenic microorganisms. The innate immune system provides required defence against those harmful
organisms and contributes to host survival [1]. A key part of nonspecific immune defenses in fish is the mucus layer on the skin, secreted by epidermal goblet cells, that is the first line of defense against invading pathogens [2-5]. Epidermal mucus contains widely varied biologically active substances that playing important roles in inhibiting the pathogens entrance [6].

The intensive production systems exposes cultured organism to stress which may consequently elevates the risk of disease outbreak [7]. The application of immunostimulants in diet has been suggested as a promising mean for improving the health status and disease prevention [8]. The usefulness of immunostimulants has been demonstrated in modern aquaculture. There is a wide range of immunostimulants such as vitamins, microorganisms, animal and plant extracts, by-products of other industries, etc. [9]. The medicinal plants and their derivate classified as environment friendly immunostimulants which are cost-effective and without any side-effects [10]. Myrtle (*Myrtus communis* L.) is an important medicinal plants native to Mediterranean regions and Middle East especially in Iran. It belongs to Myrtaceae family (Myrtales order) and in literatures many medicinal properties attributed to this plant [11, 12]. Myrtle leaves contain various chemical and polyphenolic compounds such as, flavonoids, tannins, saponins, vitamin C and essential oils [13,14]. Previous studies revealed antimicrobial and antibacterial [15-19], antiviral [20, 21], antifungal [22-24] and antioxidant properties [19, 25-28] of Myrtle. This medicinal plant reported to be safe and without harmful and toxic effects [29-32].

It has been reported that administration of herbal dietary supplements such as Garlic [33], Peppermint (*Mentha piperita*) [34] and palm fruit [35] improved the mucosal immune responses of Caspian roach (*Rutilus rutilus*), Caspian white fish (*Rutilus frisii kutum*) and common carp (*Cyprinus carpio*), respectively. However, to the best of our knowledge there is no information on the effects of *M. communis* on the fish mucosal parameters. Thus, the aim of this study was
determination of the effects of dietary administration of Myrtle on some epidermal mucosal immunity parameters in the rainbow trout (*Oncorhynchus mykiss*) fingerling.

1. Materials and methods

2.1. Fish and experimental diets

Rainbow trout (*Oncorhynchus mykiss*) fingerling weighing 6.50±0.55g obtained from a fish farm in Lorestan, Iran. The fishes were allowed to acclimatize for two weeks prior to experiment. During the acclimatization period, fish were fed five times a day with a commercial food (Faradaneh, Iran). The analysis of this commercial diet is given in Table 1. Thereafter, the fishes were randomly stocked into 12 square cage (65 × 65 × 65 cm) with a metal framework at a density of 30 fish per cage. Cages were kept in a Raceway pond (30×3×2 m) with the flow through system. The average temperature, dissolved oxygen level and pH were 15 ± 1.2 °C, 6.4 ± 0.1 mg L\(^{-1}\) and 7.7 ± 0.2, respectively.

M. communis samples were supplied, dried at room temperature and then powdered as suggested elsewhere [55-56]. The obtained powder kept at 4°C until preparation of experimental diets. For preparation of experimental diets, a commercial diet (Table 1) was considered as basal diet (control diet, 0% Myrtle) and three experimental diets were prepared by supplementation of the basal diet with three levels (0.5, 1 and 1.5%) of Myrtle. Experimental diets were kept in plastic bags at -4 °C until used. During the feeding trial (60 days), fish were hand-fed (3.8 % of body weight) four times a day. The feeding ration was corrected every 2 weeks following a 24-h starvation period and batch weighing.

2.2. Skin mucus collection

Fish were starved for 24 h and then six specimens were randomly selected from each cage. Prior to collection of skin mucus after Ross et al. [36] fish were anesthetized with 5 mg l\(^{-1}\) clove
powder. Polyethylene bags contain 10 ml NaCl (50 mM) were prepared and sampled fish were transferred to bags. Fish were removed after 2 min, the obtained mucus samples were transferred to 15-ml sterile tubes and centrifuged at 1500×g for 10 min at 4°C. The supernatants were kept at -80°C until use.

2.2. Skin mucus protein and enzyme activities

The mucus total protein was determined using bovine serum albumin as standard according to the method of Lowry et al. [37]. The absorbance was read using a spectrophotometer (Biochrom, Libra S12) at 750 nm. Alkaline phosphatase (ALP) was estimated by using the Ziest Chem Diagnostics kit (Tehran Company, Iran). The absorption read at 405 nm in a spectrophotometer and ALP activity was calculated according to the manufacturer protocol [38]. Lysozyme activity in mucus samples of rainbow trout was determined using the method described by Ellis [39] with some modifications. Briefly, the suspension of lysozyme sensitive bacterium (Micrococcus luteus) prepared in 0.05 M sodium phosphate buffer (pH 6.2). 50 mL of skin mucus samples were added to 2 ml of a suspension. Then, after three min the absorbance was read by a spectrophotometer (Biophotometer Eppendorf). The decrease in absorbance of 0.001 min⁻¹ was considered as one unit of lysozyme activity.

2.4. Skin mucus antibacterial activity

The antimicrobial activities of rainbow trout mucus were evaluated against five bacterial strains including two common fish pathogens [Aeromonas hydrophila (ATCC 7966) and Yersinia ruckeri (BCCM5/LMG3279)] and three other bacteria [Escherichia coli (ATCC 1554), Staphylococcus aureus (ATCC 1113) and Salmonella enterica (ATCC)]. The later were selected as they were used in previous studies on fish skin mucus antibacterial activity. The antibacterial activity was determined using the standard disc diffusion method described by Hellio et al. [40].
The bacteria were cultured in nutrient broth medium overnight (at 37 °C) and then 0.1 ml of broth culture (1.5×10^8 CFU ml⁻¹) was cultured on nutrient agar. Then, paper discs (6 mm) contain 100 µl mucus were placed on the medium and incubated overnight (at 37 °C). The growth inhibition zone was calculated based on visual observation and by using a Caliper.

For minimum inhibitory concentration (MIC), a serial dilution of the mucus samples were prepared in well as suggested elsewhere [40]. 1.5×10^8 CFU ml⁻¹ bacteria were added to wells and incubated overnight at 37 °C. The MIC of samples was determined by visual observation [40].

2.5. Statistical analysis

After checking the normality of data and homogeneity of variance, one-way analysis of variance (ANOVA) followed by Duncan’s multiple range tests was used for data analysis. Mean values were considered significantly different at \(P < 0.05 \). All analyses were performed using statistical software SPSS (version, 17) and Excel.

3. Results

Regarding skin mucus protein level, a Myrtle dose-dependent increase was observed. The highest increments of protein level was noticed in those fish fed 1.5% Myrtle enriched diets \(\text{\(P < 0.05 \)} \) (Figure 1). Also, the ALP activity significantly increased \(\text{\(P < 0.05 \)} \) in fish fed 1 and 1.5% Myrtle compared with the control group. In addition, the highest ALP level was observed in the 1.5% Myrtle group (Figure 3). No significant difference \(\text{\(P > 0.05 \)} \) was observed between treatments and control group at the end of the 60 days (Figure 2) in case of skin mucus lysozyme activity.
The antibacterial activity against *E. coli*, *S. aureus* and *S. enterica* was not observed in all treatments and control group. Whereas skin mucus of 1 and 1.5% Myrtle fed rainbow trout showed antimicrobial activity against *A. hydrophila* and *Y. ruckeri* pathogens (Tables 2). Also, the antibacterial activity against *A. hydrophila* was significantly higher in fish fed 1.5% Myrtle compared to those in 1% Myrtle treatment (*P* < 0.05). In case of MIC of skin mucus similar results obtained as mentioned above in case of antibacterial activity (Table 3).

4. Discussion

This study is the first attempt to investigate the effects of dietary Myrtle on mucosal immune parameters of rainbow trout fingerling. Our results indicated that *Myrtus communis* as feed additive increased skin mucus soluble protein level; the highest increments in fish fed 1.5% Myrtle. Similar to the present study, the increase of skin mucus protein levels were recorded in Caspian white fish (*Rutilus kutum*) fed peppermint (*Mentha piperita*) [34], Caspian roach (*Rutilus rutilus*) fed garlic (*Allium sativum*) [33] and Porthole livebearer (*Poecilopsis gracilis*) fed commercial probiotic (*Lactobacillus casei*) [41]. It has been suggested that the increase of soluble protein level can be considered as a sign of mucus secretion which is one of the defence mechanism [42]. In the present study, the elevation of skin mucus protein levels possibly indicates 1.5% Myrtle supplementation in the diet enhance this defense mechanisms in rainbow trout. However, determination of the exact mode of action merit further research.

Alkaline phosphatase is an important lysozomal enzyme which acts as an antibacterial agent and plays protective roles in fish during wound healing, parasitic infection and stress [6, 43, 44]. Our results showed that rainbow trouts fed 1 and 1.5% Myrtle exhibited significant increase in alkaline phosphatase activity compared with the control group. These finding was in agreements with those results reported by Adel et al. [34] and Salmanian-Ghaiderijani et al. [33].
increase in protein levels and ALP activity along with the elevation of Myrtle supplementation level can be due to elevation of mucus secretion or stimulation of mucosal immune responses [45].

Among antimicrobial substances in mucus, lysozyme is a ubiquitous bactericidal enzyme which is responsible for destroying pathogens through cleaves the glycosidic bonds of the peptidoglycan layer bacteria. Besides, lysozyme also responsible for activation of other important defense molecules include the complement system and phagocytic cells [46-48].

The present results, revealed that feeding on Myrtle supplemented diet had no remarkable effects on skin mucus lysozyme activity. There is no studies regarding the effects of medicinal herbs as immunostimulant on mucus lysozyme activity. However, in contrast with present results, feeding rainbow trout and common carp with Ergosan and palm fruit significantly increased skin mucus lysozyme activity compared to the control group [1, 35]. It has been demonstrated that lysozyme activity to significantly vary depending on many environmental (such as water temperature, pH, photoperiod, season and toxins) and intrinsic (including size, age, sex, infections and stressors) parameters [49-51].

Evaluation of skin mucus in several fish species revealed antibacterial activity against different types of Gram-positive and Gram-negative bacteria [52]. Likewise, antimicrobial activity has been reported for skin mucus of rainbow trout [53]. In the present study, antibacterial activity against the fish pathogen *A. hydrophila* and *Y. ruckeri* was observed in 1 and 1.5% Myrtle treatments but no activity were observed against *E. coli*, *S. aureus* and *S. enterica*. These results were in agreement with previous findings where aqueous and crude extract of Snakehead fish (*Channa striatus*) skin mucus had no antimicrobial activity against the human pathogens [54]. Also, in accordance with present finding, the antibacterial activity of fish skin mucus against *Y.*
ruckeri has been demonstrated in Ergosan fed rainbow trout [1]. Furthermore, in agreement with our results, antimicrobial activity of Caspian white fish skin mucus against several species of bacteria such as Y. ruckeri increased along with elevation of peppermint (Mentha piperita) inclusion level [34]. These findings denote elevation of components with bactericidal properties (e.g. immunoglobulin, complement, lysozyme and lectin) in fish skin mucus following dietary administration immunostimulants [53].

In conclusion, the present results revealed that the dietary administration of Myrtle powder in rainbow trout fingerlings may led to enhanced mucosal immune response. This study encourages extensive research for determination of Myrtle as immunostimulants in aquaculture with special focus on determination of mode of action.

Acknowledgments

The authors would like to thank Mr. Nekoubin and Mr. Rezaei for providing the necessary facilities for the study. The authors are also grateful to Mrs. Forouzan Hadipour and Mrs. Marzieh Abolfathi, as laboratory technicians, for their cooperation and assistance throughout the research.

References

[55] Hoseinifar SH, Zoheiri F, Lazado CC. Dietary phytoimmunostimulant Persian hogweed (Heracleum persicum) has more remarkable impacts on skin mucus than on serum in common carp (Cyprinus carpio). Fish & Shellfish Immunology. 2016 59:77-82.

Table 1. Analysis of the commercial feed for rainbow trout (Faradaneh, Iran- SFT)

<table>
<thead>
<tr>
<th>Analysis (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>11</td>
</tr>
<tr>
<td>Crude protein</td>
<td>46</td>
</tr>
<tr>
<td>Total lipid</td>
<td>14</td>
</tr>
<tr>
<td>Ash</td>
<td>10</td>
</tr>
<tr>
<td>Fiber</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2. The antibacterial activity of the skin mucus (growth inhibition zone diameter [mm]) of rainbow trout fed diets enriched with different levels of *Myrtus communis* (0% [control], 0.5%, 1% and 1.5%) for 60 days. Values are presented as the mean ± SD. Values in a row with different superscripts denote significant difference (*P*<0.05).

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>0.5% M</th>
<th>1% M</th>
<th>1.5% M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. hydrophila</td>
<td>-</td>
<td>-</td>
<td>8.58±0.03<sup>a</sup></td>
<td>10.08±1.04<sup>a</sup></td>
</tr>
<tr>
<td>Y. ruckeri</td>
<td>-</td>
<td>-</td>
<td>8.22±0.28<sup>a</sup></td>
<td>8.25±0.04<sup>a</sup></td>
</tr>
</tbody>
</table>
Table 3. The Minimum inhibitory concentration (µl ml⁻¹) of skin mucus of rainbow trout fed diets enriched with different levels of *Myrtus communis* (0% [control], 0.5%, 1% and 1.5%) for 60 days.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>0.5% M</th>
<th>1% M</th>
<th>1.5% M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. hydrophila</td>
<td>>200</td>
<td>>200</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Y. ruckeri</td>
<td>>200</td>
<td>>200</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
Fig. 1. The skin mucus total protein levels (mg ml$^{-1}$) of rainbow trout fed diets enriched with different levels of *Myrtus communis* (0% [control], 0.5%, 1% and 1.5%) for 60 days. Values are presented as the mean ± S.D. Values in a row with different superscripts denote significant difference (P<0.05).
Fig. 2. The skin mucus lysozyme activity of rainbow trout fed diets enriched with different levels of *Myrtus communis* (0% [control], 0.5%, 1% and 1.5%) for 60 days. Values are presented as the mean ± S.D. Values in a row with different superscripts denote significant difference (P<0.05).
Fig. 3. The skin mucus alkaline phosphatase activity of rainbow trout fed diets enriched with different levels of *Myrtus communis* (0% [control], 0.5%, 1% and 1.5%) for 60 days. Values are presented as the mean ± S.D. Values in a row with different superscripts denote significant difference (P<0.05).
- Dietary Myrtle increased mucosal immune parameters in Rainbow trout
- Myrtle powder fed Rainbow trout showed increased skin mucus antimicrobial activity.
- Feeding on Myrtle powder supplemented diet had no effects on skin mucus lysozyme activity