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Abstract 

Melanoma remains among the most lethal cancers and, in spite of great attempts that have been 

made to increase the life span of patients with metastatic disease, durable and complete 

remissions are rare. Plants and plant extracts have long been used to treat a variety of human 

conditions; however, in many cases, effective doses of herbal remedies are associated with 

serious adverse effects. Curcumin is a natural polyphenol that shows a variety of 

pharmacological activities including anti-cancer effects, and only minimal adverse effects have 

been reported for this phytochemical. The anti-cancer effects of curcumin are the result of its 

anti-angiogenic, pro-apoptotic, and immunomodulatory properties. At the molecular and cellular 

level, curcumin can blunt epithelial-to-mesenchymal transition and affect many targets that are 

involved in melanoma initiation and progression (e.g. BCl2, MAPKS, p21 and some 

microRNAs). However, curcumin has a low oral bioavailability that may limit its maximal 

benefits. The emergence of tailored formulations of curcumin and new delivery systems such as 

nanoparticles, liposomes, micelles and phospholipid complexes has led to the enhancement of 

curcumin bioavailability. Although in vitro and in vivo studies have demonstrated that curcumin 

and its analogues can be used as novel therapeutic agents in melanoma, curcumin has not yet 

been tested against melanoma in clinical practice. In this review, we summarized reported anti-

melanoma effects of curcumin as well as studies on new curcumin formulations and delivery 

systems that show increased bioavailability. Such tailored delivery systems could pave the way 

for enhancement of the anti-melanoma effects of curcumin.  

Key words: Curcumin, Melanoma, Therapy, Cancer 
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Introduction 

Plant extracts and their active compounds have long been regarded as promising candidates to 

treat a variety of human diseases; however, natural products or their synthetic analogues may 

cause serious side-effects, (1, 2). Since natural products generally show less toxicity than 

synthetic compounds, they have been the subject of increasing research interest particularly for 

the treatment of cancer and its complications (3, 4). Curcumin is a natural polyphenol extracted 

from the rhizomes of the plant Curcuma longa L. (turmeric) (5, 6). Mounting evidence indicates 

that curcumin plays significant roles in several biological processes and possesses several 

pharmacological properties which are beneficial to the treatment of human diseases. These 

pharmacological effects include antioxidant (7-10), anti-inflammatory (3, 11-13), lipid-

modifying (14-17), anti-arthritic (10, 18), cardio-protective (19, 20), anti-ischemic (21), anti-

depressant (6, 22), anti-diabetic (23), neuro-protective (24), cognition-enhancing (25-28), and 

anti-atherosclerotic (5, 29) properties. These studies confirmed that curcumin can affect various 

targets such as cytokines, protein kinases, multiple transcription factors, adhesion molecules, 

inflammatory mediators and redox state enzymes (5, 30).  

Melanoma arises from malfunctioning of normal melanocytes in the epidermis. In recent 

decades, the incidence of melanomas has increased at an alarming rate, particularly in Western 

populations where individuals tend to have lighter skin color and thus less sun protection (31-

33). Patients with advanced malignancies have poor prognoses with average survival times of 3-

11 months (31). Many melanomas with early diagnoses can be removed by surgical resection 

with no further problems to the patient. However, melanomas notoriously have high metastatic 

potential, and once metastasis occurs, they are very difficult to treat (31, 34). Therefore, the 

search for novel therapies against melanoma is warranted. Many studies introduced curcumin as 

Page 3 of 40

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



4 

 

a novel molecule that can be used for the treatment of melanoma (35, 36). These reports have 

employed curcumin and its analogues using various delivery systems in melanoma therapy (36, 

37).  

With respect to the pharmacokinetic profile of curcumin, it has been observed that utilization of 

novel delivery systems such as micelles and nano-particles could increase curcumin 

bioavailability, thereby potentiating its anti-tumor effects in melanoma. In addition, the 

expression of certain microRNAs, known to influence many molecular and cellular processes, 

can be altered by curcumin (38, 39). This review summarizes the findings of various studies on 

the utilization of curcumin in melanoma therapy. Research on the tailored formulations with 

novel drug delivery systems, and synthetic analogues of curcumin are also discussed.  

Curcumin as a therapeutic agent in melanoma 

For hundreds of years, turmeric has been utilized as a treatment for conditions like inflammation, 

neoplasm, etc (3, 5). In recent years, molecular targets and various cellular and molecular 

pathways that are affected by curcumin have been evaluated and identified (5, 40). 

Several studies on animals and humans have indicated that curcumin can be safe at various doses 

(41, 42). These reports showed that curcumin could be tolerated even at very high doses. 

Although obtaining high doses of curcumin in humans is a problem, with the help of novel drug 

delivery systems, the problem of using bulky doses could be resolved (43). In addition, various 

studies have indicated that even low doses of curcumin have therapeutic effects against various 

diseases (44).  

Low solubility and lack of a high systemic bioavailability is regarded as a major problem in 

utilization of curcumin as a therapeutic agent (45). Several studies have reported low or 
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undetectable plasma/tissue levels of free curcumin (46, 47). However, it must be taken into 

account the metabolites and degradation products of curcumin, like curcumin sulfate, curcumin 

glucuronide and tetrahydrocurcumin possess significant and, in some cases, similar or stronger 

biological and pharmacological activities compared with curcumin (48-50). Another proof for 

the activity of curcumin metabolites is the biological activity of curcumin treated with alkali, 

which is known to destabilize curcumin (51).  

Many studies have shown that in multi-factorial diseases such as cancer, some agents that affect 

various cellular and molecular targets may be of higher therapeutic value (5, 30, 52). Among 

these agents, curcumin shows suitable properties and can affect different pathways in various 

diseases such as cancer (52, 53). Melanoma is known as one of the important malignancies that 

shows poor diagnosis and high resistance to different treatment regimens. Mounting evidence 

indicates that curcumin affects several molecular and cellular pathways involved in melanoma 

pathogenesis such as MST1, JNK, Foxo3, Bim-1, Mcl-1, BCl-2, Bax and JAK-2 / STAT-3 (54-

56) making it a promising therapeutic agent to be used against this type of cancer. Figure 1 

shows various cellular and molecular pathways influenced by curcumin in melanoma.  

In a research, Bush et al. investigated the molecular pathways targeted by curcumin during 

apoptosis in human melanoma cells (56). They revealed that curcumin can induce cell death in 

various melanoma cell lines with wild-type or mutant p53. They also showed that curcumin 

induces apoptosis dose- and time-dependently in melanoma cell lines. Their results indicated that 

curcumin induced cell death via different pathways e.g. activation of caspases-3 and caspases-8 

but not caspase-9 via a membrane-mediated mechanism. In addition, it was shown that curcumin 

could induce Fas receptor aggregation in a FasL-independent manner (56). Previous studies 

showed that suppression of receptor aggregation inhibited curcumin-induced cell death. Some 
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evidence revealed that melanoma cells with mutant p53 show strong resistance to conventional 

chemo-therapeutic agents (56).Therefore, curcumin might be able to overcome the chemo-

resistance of these cells and open new horizons in cancer therapy. 

Zhang et al. investigated the effects of curcumin on the migration, proliferation and invasiveness 

of human melanoma cells (57). In the referred study, A375 cells were cultured, passaged and 

treated with different concentrations of curcumin. Different concentrations of curcumin induced 

significant changes in the morphology of A375 cells. The results indicated that curcumin can 

significantly inhibit the migration and invasion of A375 cells compared with the control group. 

Curcumin (50, 25 and 12.5 mM) significantly decreased the number of A375 cells in the 

treated group. In addition, the rates of apoptosis at the concentrations of 6.25 and 12.5 mM of 

curcumin were significantly higher than those of the control group. On the other hand, 

phosphorylation levels of STAT-3 and JAK-2 at the concentrations of 10 and 20 mM of 

curcumin were significantly lower than those in the control group. Bcl-2 protein expression at 

the concentrations of 1, 2.5, 5, 10, and 20 mM of curcumin was significantly lower compared 

with the control group. In this latter study, curcumin showed various effects such as anti-

proliferative and pro-apoptotic activities on A375 cells, and the inhibition of JAK-2/STAT-3 

signaling pathway was suggested as one of mechanisms through which curcumin exerts its 

effects on this cell line (57). 

Philip et al. showed that osteopontin (OPN) induces nuclear factor kappa B (NF-κB) through 

pro-matrix metalloproteinase 2 activation via IkappaB alpha/IKK signaling pathways which are 

down-regulated by curcumin in a melanoma mouse model (58). Their results indicated that 

curcumin could inhibit NF-κBB-DNA binding, NF-κB transcriptional activity and the OPN-

induced translocation of p65. The authors revealed that curcumin could inhibit OPN-induced cell 
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migration, extracellular matrix invasion, and cell proliferation. Also, curcumin can 

synergistically induce apoptotic morphological changes by OPN in melanoma cells. Moreover, 

curcumin suppresses OPN-induced tumor growth in nude mice, and inhibits the activation of 

OPN-induced tumor and the levels of pro-MMP-2 expression. Table 1 illustrates the effect of 

curcumin on melanoma reported by different studies (58).   

An important mediator of the cell stress response is heat shock protein 90 (Hsp90), which has 

been reported to be up-regulated in melanoma (59), and its inhibition, along with the inhibition 

of Hsp70, has been reported to enhance the sensitivity of melanoma cells to the anti-tumor 

effects of hyperthermia (60). Interestingly, there is evidence showing that curcumin 

synergistically enhances the anti-tumor effect of bortezomib in melanoma through inhibition of 

Hsp90 expression (61). Hemeoxygenase/biliverdin reductase (HO/BVR) is another main 

component of the cell stress response (62, 63). This system facilitates the degradation of heme 

which is toxic if produced in excess or unbalanced under redox conditions (64). Recently, it was 

found that HO/BVR system is up-regulated in melanoma patients (65). Interestingly, among the 

pharmacological effects of curcumin, enhancement of the cell stress response was mediated 

through HO/BVR (66). Hence, regulation of cell stress response could be regarded as a potential 

mechanism curcumin may affect development and progression of melanoma. 

Parallel to the identification of many anti-cancer effects of curcumin, some studies have 

indicated that this agent could cause potential adverse effects under specific conditions (67, 68). 

There is some data showing that curcumin could induce chromosomal alterations and DNA 

damage, both in vitro and in vivo (69). However, Kurien and colleagues indicated that curcumin 

does not bind or intercalate into DNA (70). It should be noted that this binding could be caused 

by the solvent of curcumin (e.g. organic solvents) rather than the compound itself (70). Inhibition 
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of several drug-metabolizing enzymes including CYP3A4, glutathione-S-transferase and UDP 

and UDP-glucuronyl transferase is another effect of curcumin which may induce potential drug 

interactions (71). Although such sporadic reports on the potential adverse effects of curcumin 

exist and necessitate further evaluations, the trend in findings is in favor of the acceptable safety 

of this compound. Moreover, conducted clinical trials of curcumin have shown the safety of 

curcumin for human use, even in studies administering highly bioavailable preparations of 

curcumin. It is also interesting to note that curcumin has been affirmed with a GRAS (generally 

recognized as safe) status by the US Food and Drug Administration. 

Table 1. Effects of curcumin on melanoma as reported by various studies. 

Dose 

 

Target gene Effects   Model (in vitro/ in 

vivo/human) 

Type of 

cell line 

Ref  

0-80 mM mPTP Facilitating mPTP 

death pathway 

In vitro WM-115 

, B16 

(72) 

10, 20 

mM 

JAK-2 / STAT-3 Anti-

proliferative and 

pro-apoptotic 

activities  

In vitro A375 

 

(57) 

10 µM - Inhibition of 

proliferation and 

stimulation of 

In vitro B16F10 (73) 
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differentiation 

15 µM Mcl-1, Bcl-2, Bax, 

caspase-8, Caspase-3, 

NF-κB, p38, p53 

Apoptosis 

induction 

In vitro A375, 

MV3 , 

M14 

(74) 

30-40 µM caspase-3/7 Apoptosis 

induction 

In vitro B16F10 (75) 

10 µM ERK /Akt Apoptosis 

induction 

In vitro A375 (76) 

30–

100 µM 

mPTP, ANT-1 Apoptosis 

induction 

In vitro WM-115 (77) 

0.2-5 

µg/ml 

caspases 8, 9 , 3 Apoptosis 

induction 

In vitro G-361 , 

A375 

(78) 

25 µm/ml MST1, JNK, Foxo3 , 

Bim-1 

Apoptosis 

induction 

In vitro B16 and 

WM-115 

(79) 

2.5 mM MRP1, GSTM1 Apoptosis 

induction 

In vitro CAL1 (80) 

< 5 µM - Decreasing cell 

growth 

In vitro B16-F10 (81) 

50 µM - Inhibition of 

tumorigenesis and 

angiogenesis 

In vitro, in vivo B16F1 , 

B16F10, 

A375 , 

(82) 

Page 9 of 40

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



10 

 

SK-Mel-

28 

10
-5

  M PDE1A 

 

Anti-proliferative 

effect 

In vitro B16F10 (83) 

20 µM - Inhibition of 

melanogenesis 

In vitro B16F10 (84) 

50 µM NFκB, MT1-MMP, 

MMP-2 

Inhibition of tumor 

growth and 

decrease migration 

In vitro, in vivo B16F10 (85) 

1.25–10 

µM 

PI3K/Akt/ GSK 3β, 

ERK , p38 MAPK 

Inhibits 

melanogenesis 

In vitro B16 (86) 

High dose - Apoptosis 

induction 

In vitro G361, 

A375 

(87) 

100 

mg/kg 

EphA2, PI3K, MMP-2, 

MMP9 

Inhibition of tumor 

growth and 

vasculogenic 

mimicry 

In vitro B16F10 (88) 

10 µM Caspase 3 , Caspase 9, 

Bcl-XL ,  X-IA 

Induce apoptosis In vitro B16 , 

WM-115 

(89) 
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10 µM 

MITF, MEK/ERK ,  

PI3K/Akt 

Suppressive 

activity on α-MSH-

stimulated 

melanogenesis 

In vitro B16F10 

 

(90) 

10-30 µM caspase-9 , caspase-3 Induce apoptosis In vitro M21 , 

SP6.5 

(55) 

20 µM PRL-3 Inhibition of 

metastasis 

In vitro, in vivo B16 , 

B16BL6 

(91) 

20 µM STAT1 , STAT5, IFN-

alpha, IFN-gamma,  

interleukin-2 

Apoptosis 

induction 

In vitro A375 , 

Hs294T 

(92) 

50 µM Akt, NF-kB, BclXL, 

Erk,VEGF, cyclin D1 

Blocks tumor 

formation 

In vitro, in vivo 

B16F10 

 

(93) 

- bcl-2, P53 Apoptosis 

induction 

in vivo B16 (94) 

75 µM eIF2α, GADD 153, 

aspases-3 /7, Bcl-2 

Apoptosis 

induction 

In vitro B16F10 (95) 

50 µM COX-2, cyclin D1, NF-

kB 

Apoptosis 

induction 

in vivo B16F10 (96) 
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30 µM c-myc , caspase-3 Apoptosis 

induction 

In vitro A375 

 

(97) 

6.1-

7.7 µM 

NF-kB, IKK Antiproliferative 

and apoptotic 

In vitro C32, G-

361, ,  

WM 

266- 

(54) 

30 µM GSTP1, MRP1  Inhibition of the 

multidrug 

resistance 

In vitro A375 (98) 

18, 27 µM - Inhibition of 

growth of B16-

R melanoma 

In vitro, in vivo B16-R (99) 

15 µM MMP-2 

 

Anti-metastatic In vitro B16F10 (100) 

50 µM iNOS, NF-kB Apoptosis 

and cell cycle arres

t 

In vitro A375 (101) 

2.6 , 1.9 

µM 

GST  Inhibition of the 

multidrug 

resistance 

In vitro CAL1 (102) 
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dependent 

manner 

Nm23, E-cadherin 

 

 

Anti-metastatic 

properties 

In vitro, in vivo B16F10 (103) 

50 , 100 

µM 

OPN, NF-kB Apoptosis 

induction 

In vitro, in vivo B16F10 (58) 

30 µM aspases-3/8 Apoptosis 

induction 

In vitro MMAN, 

MMRU, 

RPEP, 

,PMWK, 

Sk-mel-

2, Sk-

mel-5, ,  

Sk-mel-

28 c, 

MEWO 

(56) 

125 µg/ml COX-I, COX-II Antioxidant and 

anti-inflammatory 

activities 

In vitro SKMEL-

28, M14, 

, UACC-

62 

(104) 

25 µM GST  Inhibition of the 

multidrug 

in vivo IGR-39 (105) 

Page 13 of 40

John Wiley & Sons, Inc.

International Journal of Cancer

This article is protected by copyright. All rights reserved.



14 

 

resistance 

200 

nmol/kg 

- Inhibition of lung 

metastasis 

in vivo B16F10 (106) 

 

 

Curcumin analogs as powerful tools in melanoma therapy  

Mounting evidence indicates that curcumin has multiple biological effects that make it a 

promising therapeutic candidate to be used in the treatment of several diseases such as cancer 

(107). On the other hand, it was observed that this agent has low oral bioavailability which led to 

the development of curcumin analogues (such as DM-1, EF24,  D6 and CDF) with better anti-

cancer effects and bioavailability (52). DM-1, one of the curcumin analogues, has shown anti-

tumor effects in various in vitro and in vivo models (107, 108). It has been confirmed that this 

compound is not only a suitable anti-cancer agent with anti-metastatic and anti-proliferative 

activities but also it has minimal side effects on normal cells (109, 110). Table 2 shows various 

curcumin analogues that can be used in melanoma therapy.  

Commercial curcuminoids include curcumin, demethoxycurcumin and bisdemethoxycurcumin. 

Most of the studies assessing the effects of curcumin against melanoma have been conducted 

with curcumin. Therefore, the impact of demethoxy and bisdemethoxy analogues, which are 

known to differ with curcumin in some properties (111), in reducing the progression of 

melanoma remains to be clarified. Four major strategies that could be used to improve the 

pharmacokinetic profile and enhance the delivery of curcumin are (1) Liposomes, micelles, and 
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phospholipid complexes; (2) Glucuronidation/metabolism interference via co-administration of 

curcumin with adjuvants like piperine; (3) Nanoparticles; and (4) Emulsifying or dispersing 

agents.  Below, some of the studies on these forms of curcumin in melanoma are summarized. 

In a study, Lo  et al. reported that two compounds namely, 1,7-bis(4-hydroxyphenyl)-1,4,6-

heptatrien-3-one (BHPHTO) and bisdemethoxycurcumin (BDMC) can inhibit the proliferation 

of melanoma cells (112). Moreover, Faião-Flores et al. revealed that curcumin analogue DM-1, 

alone or in combination with dacarbazine (DTIC), shows anti-tumor effects as it inhibited 

melanoma progression in a melanoma mouse model (113). In addition, no toxicological changes 

were observed in organs such as the spleen, kidneys, liver and lungs after the administration of 

DM-1, either alone or in combination with DTIC. DM-1 in combination with DTIC improved the 

recovery from anemia induced by melanoma and immunomodulation. It was found that DM-1 

alone and in combination with DTIC induces apoptosis via the cleavage of caspase-8, -3 and -9. 

These results indicated that DM-1 shows therapeutic effects on melanoma via a preferential 

intrinsic apoptotic pathway by decreasing Bcl-2/Bax ratio (113).  

In another study, Pisano et al. indicated that D6, a curcumin analogue, has anti-tumor activity 

against melanoma and neuroblastoma cells (114). This study revealed that α,β-unsaturated 

ketone D6 shows stronger therapeutic effects in inhibiting melanoma growth in comparison with 

curcumin. Various experiments were done in this study such as clonogenic assay, TUNEL assay, 

annexin-V staining and caspases activation assay, and PARP cleavage assay. These experiments 

confirmed that D6 is more effective in the treatment of melanoma and neuroblastoma when 

compared with curcumin. Hence, this data suggested that D6 can be considered as a good 

candidate for new therapies against neural crest-derived tumors (114). 
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Dahmke et al. reported that “deketene curcumin” shows better therapeutic effects than curcumin 

on melanoma cells (115). This form of curcumin could induce toxicity in B78H1 melanoma cells 

that finally leads to G2 arrest. Their results confirmed that deketene curcumin can be used as an 

anti-cancer agent that possesses better bioavailability than curcumin (115).  

Novel therapeutic approaches for curcumin targeting in melanoma  

Various studies on bio-distribution, absorption, elimination, and metabolism of curcumin have 

indicated that this agent has rapid metabolism, poor absorption and rapid elimination from the 

body. Therefore, low systemic bioavailability of oral curcumin is known as a major limitation of 

its use (128). However, it should be considered that many of the metabolites and degradation 

products of curcumin, possess strong biological and pharmacological activities (48-50).  

Several studies utilized different approaches to overcome the aforementioned limitations. Using 

adjuvants can be a suitable approach to block curcumin metabolic pathways and improve its 

bioavailability (129). Various delivery systems such as liposomes, nanoparticles, micelles, and 

phospholipid complexes have been proposed to improve the pharmacokinetic properties of 

curcumin for cancer therapy. For example, micelles and phospholipid complexes can improve 

the gastrointestinal absorption of curcumin which results in higher plasma levels (129). Another 

strategy is to enhance the aqueous solubility of curcumin. Recently, Kurien et al. reported 

enhancement of the solubility of curcumin in water by 35 folds by heat under pressure. 

Interestingly, heat-solubilized curcumin was shown to increase pharmacological effect of 

curcumin in mice with systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS) (130).  

This finding is in line with previous studies showing enhanced solubility and biological activity 
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of heat-treated curcumin (131-133). Table 3 illustrates novel curcumin delivery systems used in 

melanoma therapy.  

In a study, Lu et al. showed that curcumin micelles remodel tumor microenvironment and 

enhance vaccination efficacy in a model of advanced melanoma. In this study, an amphiphilic 

curcumin-based micelle (curcumin-PEG conjugate; CUR-PEG) was intravenously administered 

to a mouse model of melanoma (30). Their results indicated that CUR-PEG and vaccine 

treatments have a stronger anti-tumor effect compared with separate treatments. Their study 

showed that utilization of combination therapy leads to significant IFN-γ production (7-fold 

increase) and cytotoxic T cell response (41.0±5.0% specific killing). Moreover, in the tumor 

microenvironment, these therapies led to significantly down-regulated levels of 

immunosuppressive factors including myeloid-derived suppressor cells (MDSCs), T-reg cells and 

IL-6, while increased CD8
+
 T cell population. It has been observed that some pro-inflammatory 

cytokines such as TNF-α and IFN-γ have different expressions in the tumor microenvironment. 

the aforementioned combination therapies could switch macrophage polarization to M1 

phenotype and down-regulate the STAT3 pathway in the treated tumors. It was found that CUR-

PEG can improve the effects of immunotherapy in melanoma. Novel generations of drug 

delivery systems such as nanoparticle (NP) technology have provided promising solutions to 

improve the bioavailability of therapeutic agents. This delivery system will probably be suitable 

for hydrophobic agents like curcumin that have low aqueous solubility (30). 

In another study, the effect of dipeptide nanoparticles of curcumin on melanoma was evaluated 

(134). A non-protein amino acid, α, β-dehydro-phenylalanine, was used to entrap curcumin in the 

dipeptide NPs, and the anti-tumor effects of dipeptide-curcumin NPs were assessed in cancer 

models in vitro and in vivo. Using different dehydro-dipeptides, it was found that methionine-
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dehydro-phenylalanine can be regarded as a suitable dehydro-dipeptide for loading and releasing 

curcumin. In the mentioned study, it was revealed that loading curcumin in dipeptide NPs can 

improve its cellular availability and solubility, increase its toxicity in various cancer cell lines, 

and improve curcumin's efficacy in inhibiting tumor growth in mice bearing melanoma tumor. 

Curcumin-dipeptide NPs also showed enhanced in vitro and in vivo chemotherapeutic effects 

compared with free unformulated curcumin . These delivery systems have several advantages as 

they are highly biocompatible and easy to make, and possess a suitable capacity of loading and 

releasing curcumin. Moreover, curcumin's cellular uptake is improved with dipeptide NPs (134). 

In another study, Loch-Neckel et al. examined the effect of orally administered chitosan-coated 

polycaprolactone NPs containing curcumin on metastatic melanoma in the lungs (36). Their 

results indicated that curcumin could decrease cell viability and induce apoptosis in 

B16F10 melanoma cells. They found that curcumin significantly reduces the expression of 

metalloproteinases in melanoma cells. Several studies showed that metalloproteinases are 

associated with the proliferation and migration of melanoma cells. The utilization of chitosan-

coated NPs containing curcumin decreased pulmonary tumor formation in a melanoma lung 

metastasis model. In addition, histological analyses indicated a few small nodules of melanoma 

in lungs of mice treated with this system. Hence, curcumin-containing chitosan-coated 

polycaprolactone NPs may be a suitable system for the treatment of malignant melanoma (36). 

Table 2. Various curcumin analogs in melanoma therapy 

Type of curcumin 

 

Dose  

 

Target gene   Model (in vitro/ 

in vivo/human) 

Type of 

cell line  

Ref  
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Tetrahydrocurcumin  dependent 

manner 

- In vitro, in vivo B16F-10 (116) 

Salicyl curcumin dependent 

manner 

- In vitro, in vivo B16F-10 (116) 

Curcumin III dependent 

manner 

- In vitro, in vivo B16F-10 (116) 

D6  17.5 mg/kg 

Caspase-3 and 

7 

 

In vitro, in vivo  LB24, 

CN-

MelA, 

GR-Mel 

, 

WM266-

4 , 

13443, 

M14 

(114) 

Curcumin ferrocenyl 

derivatives 

17.9 µM - In vitro B16 (117) 

(2E,6E)-2,6-bis(2,5-

Dimethoxybenzylidene) 

cyclohexanone 

50 µM tyrosinase,  In vitro B16 (118) 
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Curcumin- 13c 20 µM FGF-R1, 

EGFR, Btk, 

Mink, Ret , Itk 

In vitro, in vivo B16F10 (119) 

Curcumin- compound C5   0.71 µg/mL tubulin 

polymerization 

inhibitory 

In vitro B16-F10 (120) 

DM-1 5 µM TNF-

R1 ,  caspase 

8  

In vitro, in vivo B16F10, 

A375 

(113) 

DM-1 75 µM Mcl-1 , Bcl-

xL  

In vitro SK-

MEL-5 

and 

A375 

(121) 

FLLL32/62 2 µM or 4 

µM 

STAT3 

 

In vitro A375 , 

HT144 

Hs294T 

(122, 

123) 

D6 270 nM p53, 

PI3K/Akt , 

NF-kB 

In vitro, in vivo LB24Da

gi 

(124) 

Gercumin II  250 µM - In vitro SK- (125) 
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MEL-28 

Bisdemethoxycurcumin 

(BDMC)  

25-100 µM - In vitro A2058, 

B16-F10 

(112) 

Deketene curcumin 20 µM G2 arrest In vitro B78H1 (115) 

curcumin-biphenyl 

derivatives 

1 , 10 µM - In vitro  WM266, 

CN, 

LB24Da

gi, PNP 

(126) 

DM-1 83 µM caspase-3, -8 

and -9 

In vitro, in vivo  B16F10 (35) 

NC 2067 2.0–2.4 µM - In vitro  A375  (127) 

 

Table 3. Novel curcumin delivery systems in melanoma therapy 

Type of curcumin 

 

Dose  

 

Target gene   Model (in vitro/ 

in vivo/human) 

Type of cell 

line  

Ref  

Curcuminbased micelle - IL-6 , CCL2, 

TNF-α , IFN-γ 

In vitro, in vivo B16F10 (30) 

Curcumin  -FAPαc -CpG  indolamine-2,3-

dioxygenase 

In vitro, in vivo B16 (53) 
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Curcumin- RGD-PEG-

PLA 

- - In vitro  B16 (52) 

Chitosan-

coatedliposomes-

containing curcumin  

 

2.5 µM - In vitro B16F10 (135) 

Curcumin – ANPs     (136) 

methionine-dehydro-

phenylalanine-

curcumin NPs 

30 µM - In vitro, in vivo B6F10 (134) 

Curcumin-RGD-lpNPs 25 mg/kg - In vitro, in vivo B16 (137) 

curcumin-loaded SPC 

liposomes 

20 

mg·kg
−1

 

- In vitro B16-F10  (138) 

Curcumin- MBCSPs 500 µg 

ml
−1

 

- In vitro, in vivo B16F10 (139) 

Curcumin- β-

Cyclodextrin 

14 µM - In vitro A375  (140) 

Curcumin- β-

Cyclodextrin-gemini 

14 µM - In vitro A375  (140) 
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surfactant  

chitosan-coated 

nanoparticles 

containing curcumin  

100 mM MMP-2, MMP-

9 

In vitro, in vivo  B16F10 (36) 

Curcumin/magnetite 

nanoparticles 

66.0 µM - In vitro B16-F10 (141) 

Curcumin - chitin 

nanogels 

0.1-1.0 mg 

mL
-1

 

- In vitro  A375 (142) 

Curcumin- HP-β-CD 300 µg/ml G2/M stage In vitro B16-F10  (143) 

Curcumin- PEO-PCL 10 ,  80 

µM  

- In vitro, in vivo B16F10 (144) 

Curcumin- Muc18  167–335 

nM 

NF-kB In vitro, in vivo B16F10 (145) 

curcumin plus PDMP 10 µM PI3K/AKT In vitro WM-115 

and B16 

(146) 

curcumin-nano-capsules  6 mg/kg  - In vitro, in vivo B16-F10 (147) 

EF-24-FFRmk-fVIIa 1.5 µM - In vitro RPMI-7951 (148) 

Curcumin - XGO-b-PCL 1–100 µM - In vitro B16F10 (149) 

FAP: fibroblast activation protein; PEG-PLA: polyethylene glycol-polylactic acid ; ANPs: albumin 
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nanoparticles; NP: nanoparticle; SPC: soybean phosphatidylcholine; MBCSPs:  magnetic-based 

core-shell particles; HP-β-CD: hydroxypropyl-β-cyclodextrin; PEO-PCL:  poly(ethylene oxide)-b-

poly(epsilon-caprolactone); PDMP: 1-phenyl-2-decanoylamino-3-morpholino-1-propanol; FFRmk-

fVIIa: EF-24-phenylalanine-phenylalanine argininechloromethyl ketone-factor VIIa; XGO-b-PCL: 

xyloglucan-block-poly(ϵ-caprolactone). 

Curcumin and microRNAs in melanoma 

MicroRNAs (miRNAs) are known as small and noncoding RNAs that can suppress gene 

expression at post-transcriptional levels via sequence-specific interactions with the 3’-

untranslated regions (UTRs) of cognate mRNA targets (150, 151). In addition, miRNAs are 

involved in the regulation of various key cellular processes such as apoptosis, proliferation, 

differentiation, and development (151-154). Alterations in miRNA expression have been 

observed in a number of cancers, including melanoma. These alterations can arise from either 

genetic or epigenetic changes (155). It has been suggested that dietary components may 

modulate miRNA expression (156). Few studies have investigated the effect of curcumin on the 

expression of miRNAs in melanoma. Table 4 illustrates various miRNAs affected by curcumin 

in different cancers.   

Dahmke et al. revealed that curcumin intake can affect miRNAs in murine melanoma. They 

indicated that miR-205-5p was the most significantly altered miRNA (38). This latter study 

showed that oral administration of curcumin can influence the miRNA signature of engrafting 

melanoma. Dahmke et al. evaluated the effects of curcumin in a melanoma model, which was 

established by the injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin-

containing diet (4%) was administered two weeks prior to the injection of tumor cells until the 

end of the experiment. The results indicated that curcumin feeding significantly decreases the 
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growth of the flank tumors and substantially alters miRNA expression signature in tumors. For 

example, miR-205-5p was expressed over 100 times higher in the treatment groups compared 

with the control group. MiRNAs can have various targets in melanoma cells. Western blot 

analyses indicated that some targets such as proliferating cell nuclear antigen (PCNA) and anti-

apoptotic B-cell CLL/lymphoma 2 (Bcl-2) were significantly down-regulated in the treatment 

groups. This study proposed that there are alterations in the miRNA expression in engrafting 

curcumin-treated melanoma and miR-205-5p was the most significantly altered miRNA (38). 

Diphenyldifluoroketone (EF24) is known as a curcumin analogue with anti-tumor effects that are 

mediated via inducing apoptosis and arresting cell cycle. Zhang et al. investigated the effect of 

EF24 on miR-33b in melanoma cells (157). They revealed that at non-cytotoxic concentrations, 

EF24 is able to suppress epithelial-to-mesenchymal transition (EMT) and cell motility of 

melanoma cell lines such as A375 and Lu1205. In addition, EF24 suppressed HMGA2 

expression at mRNA and protein levels. MiR-33b can directly bind to 3' untranslated region (3'-

UTR) of HMGA2 and suppress its expression. It was shown that miR-33b inhibition 

or HMGA2 over-expression reverts EF24-mediated suppression of EMT. Moreover, 

EF24 modulates the focal adhesion assembly, Src, FAK and RhoA activation, and HMGA2-

dependent actin stress fiber formation via targeting miR-33b. Hence, these results propose 

that EF24 can suppress melanoma metastasis by up-regulating miR-33b and concomitantly 

decreasing HMGA2 expression (157). 

Yang et al. confirmed that EF24 targets NF-κB and miRNA-21, and possesses a promising anti-

tumor activity (39). EF24 has been reported to inhibit the NF-κB pathway in DU145 human 

prostate cancer cells and B16 murine melanoma cells. Moreover, EF24 induced apoptosis in 

these cells apparently via inhibiting miR-21 expression, and also improved the expression of 
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several miR-21 target genes, e.g. PDCD4 and PTEN. This molecule inhibited miR-21 expression 

and lung metastasis, prolonged animal survival and increased the expression of miR-21 target 

genes in a mouse model of melanoma. Moreover, EF24 enhanced the expression of potential 

tumor suppressor miRNAs and inhibited the expression of oncogenic miRNAs, such as miR-21. 

These findings proposed that EF24 shows anti-cancer activities via regulating NF-κB pathway 

and miRNA expression (39).  

Table 4. MiRNAs affected by curcumin in various cancers 

MiRNA  Type of 

curcumin  

Cancer  Expression 

in cancer   

Target gene  Model Type of 

cell line 

Ref  

miR-33b EF24 Melanoma  Up -

regulation  

E-cadheri, STAT3 In vitro Lu1205 

and A375 

(157) 

miR-

205-5p 

 

Curcumin  Melanoma  Up- 

regulation 

Bcl-2, PCNA In vitro, 

In vivo 

B78H1 (38) 

miR-21 EF24 Melanoma  Down-

regulation  

NF-κB, JAK-

STAT, PTEN , 

PDCD4 

 

In vitro, 

In vivo 

B16  (39) 

miR-34a Curcumin  colorectal  Up regulation - In vitro HCT116, 

RKO, 

SW480, 

(158) 
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SW620, 

HT29, 

Caco2 

miR-27a Curcumin  colorectal  Up regulation - In vitro HCT116, 

RKO, 

SW480, 

SW620, 

HT29, 

Caco2 

(158) 

miR-7/ 

let-7a, b, 

c, d, 

miR-26a, 

miR-101, 

miR-

146a,  

miR-

200b, c 

Curcumin/d

iflourinated-

curcumin  

pancreatic  Up regulation EZH2, Notch-1, 

CD44, EpCAM 

In vitro AsPC-1 , 

BxPC-3/ 

AsPC-1 

and 

MiaPaCa-

2 

(159, 

160) 

miR-

192-

5p/215 

Curcumin lung  Up regulation P53  In vitro, 

In vitro 

H460 , 

A427 

(161) 
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miRNA-

186* 

Curcumin lung  Down 

regulation 

caspase-10 In vitro A549  (162) 

miR-

125a-5p  

Curcumin  nasopharyn

geal 

carcinoma  

Down 

regulation 

TP53 In vitro HONE1 (163) 

miR-9 Curcumin ovarian  Up regulation Akt/FOXO1 In vitro SKOV3  (164) 

miR-205 PLGA-CUR 

NPs 

Prostate  Up regulation STAT3 , AKT , 

Mcl-1, Bcl-xL 

In vivo LNCaP (165) 

miR-19 Curcumin Breast 

cancer  

Up regulation PTEN, p-AKT, p-

MDM2, p53 

In vitro MCF-7 (166) 

miR-

200a/b 

Curcumin Hepatocellu

lar  

carcinoma 

Up regulation Bcl-2, Bad  In vitro HepG2 ,  

HepJ5 

(167) 

miR-

15a/16-1 

Curcumin Leukemia Up regulation WT1  In vitro K562 ,  

HL-60 

(168) 

miR-203 Curcumin Bladder  Up regulation  Akt2 , Src In vitro T24, J82 

and 

TCCSUP 

 

 PLGA-CUR NPs: poly (lactic-co-glycolic acid)-curcumin-nanoparticles. 

 

Conclusion 
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Melanoma, a malignant tumor of melanocytes, is one of the most aggressive types of 

malignancies. Although melanoma comprises less than 5% of all skin cancers, it is responsible 

for the majority of skin cancer-related deaths. At early stages, melanoma can be treated by 

surgical resection; however, most often it progresses to the invasive stage and does not respond 

to conventional treatments largely due to the development of multi-drug resistance. Hence, new 

therapies are required to overcome the limitations of conventional therapies. Several lines of 

evidence have indicated that curcumin affects key pathways that are involved in different cancers 

such as melanoma. It seems that this molecule plays an important role in cancer therapy. Several 

targets at the cellular and molecular levels (e.g. signaling pathways, transcription factors and 

miRNAs) are affected by curcumin in melanoma. Hence, curcumin can be regarded as a 

promising agent in the treatment of melanoma. Nevertheless, utilization of curcumin is 

associated with some limitations such as rapid metabolism, low oral absorption and rapid 

elimination from the body. These limitations may attenuate efficacy and decrease the therapeutic 

effects of curcumin. New formulations and novel delivery systems have opened a new window 

into the landscape of treatment of various diseases such as melanoma with curcumin. Finally, 

most of the evidence on the efficacy of curcumin against melanoma and other types of cancer 

pertains to pre-clinical studies. Although some clinical evidence exists that favors the benefits of 

curcumin supplementation in cancer patients (169-171), clinical evidence is still scarce and a 

thorough outcome study is yet to be performed. Hence, clinical proof-of-concept investigations 

are required to verify the translational value of the reported anti-tumor effects of curcumin in 

animal and cellular models of cancer. However, further evidence from prospective clinical trials 

is required to decipher the place of curcumin in the clinical management of melanoma.  
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Figure 1. Cellular and molecular pathways affected by curcumin in melanoma. MAPK: mitogenactivated 
protein kinase; STAT: signal transducer and activator of transcription; NF-Κb: nuclear factor kappa-light-

chain-enhancer of activated B cells; PARP: poly(ADP-ribose) polymerase  
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