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ABSTRACT
Context: Acetaminophen overdose is regarded to a common cause of acute liver failure. The hepatotox-
icity leads to mitochondrial oxidative stress and subsequent necrotic hepatocellular death.
Objective: This study examines the protective effect of metformin on acetaminophen-induced oxidative
stress, inflammation and subsequent hepatotoxicity in mice.
Materials and methods: Male BALB/c mice were orally administered to acetaminophen (250 mg/kg/d) for
a 7-day period. The mice received metformin (100 and 200 mg/kg/d, p.o.) for 21 days. To evaluate acet-
aminophen-induced oxidative stress, liver tissue level of malodialdehyde (MDA), end product of membrane
lipid peroxidation, and activities of superoxide dismutase (SOD) and glutathione (GSH) were measured.
Histological analysis and measurement of serum alanine aminotransferase (ALT), aspartate aminotransferase
(AST) and alkaline phosphatase (ALP) were performed. Moreover, tissue concentrations of proinflammatory
cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a), along with, C-reactive protein (CRP)
were assessed.
Results: Acetaminophen caused focal hepatocyte necrosis, inflammation and fatty degeneration, as well as
increased tissue levels of AST, ALT, ALP and MDA, and also decreased GSH and SOD activities. Moreover,
IL-6, TNF-a and CRP levels were increased following acetaminophen hepatotoxicity. Metformin (200 mg/kg/d)
significantly normalized MDA, SOD and GSH levels (p< 0.001), and exerted a hepatoprotective effect by
significant decreasing ALT, AST and ALP concentrations (p< 0.001). The tissue levels of IL-6, TNF-a and
CRP were markedly decreased by 21-day treatment with metformin (200 mg/kg/d) (p< 0.001).
Discussion: The results suggest metformin protects hepatocytes against acute acetaminophen toxicity.
Metformin is indicated to diminish oxidative stress, proinflammatory cytokines, and hepatocyte necrosis.
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Introduction

Acetaminophen (N-acetyl-p-aminophenol, APAP) is characterized
as a most common used secure and beneficial painkiller and anti-
pyretic. Despite of its beneficial effects on inflammation, it has
been reported that acute overdose and chronic use of APAP lead
to APAP poisoning with serious complications, including necrosis
of the centrilobular cells of the liver (Bessems & Vermeulen 2001;
James et al. 2003; Reid et al. 2005). In this regard, in 2009, the
American Association of Poison Control Center offered about
56,000 emergency room visits, 26,000 hospitalizations, and over
400 deaths caused by misuse of APAP and/or drugs containing
the compound (Larson et al. 2005; Nourjah et al. 2006; Bronstein
et al. 2010; McGill et al. 2012).

The adverse reactions of APAP are associated with the reactive
metabolite derived from hepatic cytochrome P-450 metabolism.
At initial stage of metabolism, APAP is oxidized to a reactive sub-
stance, N-acetyl-p-benzoquinone imine (NAPQI), which is then
conjugated and detoxified with glutathione (GSH) to produce
nontoxic metabolites (Gelotte et al. 2007; Anon 2010). At noxious
amount of APAP, the excessive generation of NAPQI eventually
results in discharge of glutathione. In rodents, the higher doses of

APAP can saturate the sulfation and glucoronidation pathways,
leading to excessive formation of NAPQI (McGill et al. 2012).
Glutathione depletion is only a cascade of intracellular events
including mitochondrial oxidative stress, production of reactive
oxygen and nitrogen species, activation of stress proteins and
gene transcription mediators, and mobilization of the liver’s
essential immune system. Ultimately, imbalance of the innumer-
able pathways can lead to hepatic cell loss (Kaplowitz et al. 2008).
This condition is due to the increment of liver enzymes levels
after 12 –36 h of the drug overdose (Dart et al. 2006). Following
the alterations in cellular and biochemical indices, maximal clin-
ical liver damages, such as jaundice, encephalopathy, coagulopathy
and subsequent hepatic failure are observed (Rumack & Matthew
1975). To describe the mechanisms underlying these deficits, the
important role of pro-inflammatory cytokines (i.e., IL-6 and TNF-
a) are confirmed to be involved in APAP-induced hepatotoxicity
and liver cell apoptosis (Dambach et al. 2006).

The previous studies have suggested that NAPQI binding to
mitochondrial proteins changes the morphology and function of
liver mitochondria (Das et al. 2010; Bajt et al. 2011), resulting in
mitochondrial oxidative stress (McGill et al. 2012). The event is
consistent with the opening of mitochondrial membrane
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permeability transition pore (MPTP) (El-Hassan et al. 2003;
Zambon et al. 2006; Kon et al. 2004), matrix swelling, and outer
membrane lysis (Das et al. 2010; McGill et al. 2012). The perme-
ability changes is contributed to the continuous events including
inner mitochondrial membrane depolarization, uncoupling of oxi-
dative phosphorylation, release of intramitochondrial ions, and
decreased ATP synthesis. The cell death occurred following the
superoxide release from mitochondria (Lemasters 1999; Zorov
et al. 2000; Reid et al. 2005). Moreover, apoptosis-inducing factor
(AIF), endonuclease G (EndoG) and proapoptotic proteins,
including cytochrome c and Smac/DIABLO, are released from
mitochondria, followed by translocation of endonucleases to
nuclei and subsequent nuclear DNA fragmentation (Lin et al.
2000). Finally, centrilobular hepatocyte necrosis is the endpoint of
APAP toxicity, which leads to liver failure (Zhou et al. 2001;
Kaplowitz et al. 2008; McGill et al. 2012).

Metformin, a widely used dimethylbiguanide anti-
hyperglycemic agent, is shown to exert antioxidant effects
(Davidson & Peters 1997; Poon et al. 2003; Tavafi 2013a) along
with an increase in the reduced liver and blood levels of glutathi-
one (GSH) in diabetes (Ewis & Abdel-Rahman 1997; Poon et al.
2003; Tavafi 2013b). Moreover, metformin reduces the activities
of plasma xanthine oxidase and erythrocyte glutathione peroxid-
ase, suggesting its protective effect against oxidative stress (Cosic
et al. 2001; Poon et al. 2003). There are evidences that metformin
protects the mitochondrial respiratory chain in oxidative stress
conditions and cell death (Gobe et al. 2013; Rafieian-Kopaei et al.
2013; Spasovski 2013). According to the literature, it is hypothe-
sized that metformin can exert protective effects against oxidative
stress-induced injury through various mechanisms. For instance,
treatment with metformin maintains the hepatic mitochondrial
glutathione redox status, which is essential for cell survival
(Meister & Anderson 1983; Poon et al. 2003).

According to high incidence of APAP poisoning and the
resulted severe liver damages, finding hepatoprotective agents
seems to be necessary. Therefore, the current study aimed to
examine the hepatoprotective effect of metformin in APAP-
induced toxicity in mice. The study attempts were to investigate
the role of metformin in normalization of liver injury-related
enzymes, oxidant/antioxidant enzymes balance and proinflamma-
tory cytokines for protecting against the liver damage induced by
acute APAP exposure.

Materials and methods

Drugs

The following compounds were administered in the present study:
APAP (Acetaminophen; Tocris Bioscience, Ellisville, MO), metfor-
min (Tocris Bioscience, Ellisville, MO), N-acetylcysteine (Sigma
Aldrich, St. Louis, MO).

The drugs were freshly dissolved in normal saline 0.9% and
were daily administered through oral gavage in a constant volume
of 10 ml/kg body weight during a 7-day (for APAP) and 21-day
(for metformin) period. Also, NAC (dissolved in normal saline
0.9%) was intraperitoenally injected 1 day after a 7-day period of
exposure to APAP (constant volume of 10 ml/kg body weight).

Animals

Ninety male BALB/C mice (4–5 weeks old) weighing 22–25 g
were obtained from the Animal house of the hepatitis research
center, Lorestan University of Medical Sciences, and were placed
in cages at room temperature (20 ± 2 �C), relative humidity of

approximately 50% and a 12 h dark/light cycle with access to
water and standard food ad libitum. All experiments were per-
formed in accordance with the institutional animal care and use
committee (Lorestan University of Medical Sciences) guidelines.
All protocols in the investigation were approved by the Ethics
Committee of Lorestan University of Medical Sciences.

Experimental design

The animals were randomly divided into six main groups of 15
mice each. All groups (except for control group) were treated
with APAP at a dose of 250 mg/kg body weight to induce liver
damage through oral gavage for a 7-day period (Henderson et al.
2000). Then, the mice were subjected to oral treatment of differ-
ent doses of metformin once daily for 21 days, and single oral
administration of N-acetylcysteine (NAC) as follows:

Group 1: Control animals, receiving normal saline solution
0.9%;

Group 2: APAP-exposed animals, receiving normal saline solu-
tion 0.9%;

Group 3: APAP-exposed animals, receiving metformin at dose
of 50 mg/kg/d, p.o. (Choi et al. 2006);

Group 4: APAP-exposed animals, receiving metformin at dose
of 100 mg/kg/d, p.o. (Choi et al. 2006);

Group 5: APAP-exposed animals, receiving metformin at dose
of 200 mg/kg/d, p.o. (Choi et al. 2006);

Groups 6–8: Animals receiving metformin at doses of 50, 100
and 200 mg/kg/d, p.o., separately.

Group 9: APAP-exposed animals, receiving a single dose of
N-acetylcysteine (100 mg/kg, p.o.) (Choi et al. 2013);

All doses and the time interval between drugs administration
and the tests were selected based on pilot studies. At the end of
the experimental period, all mice were anesthetized with an intra-
peritoneal injection of pentobarbital (70 mg/kg) and euthanized by
cervical dislocation. Then, liver and serum samples were collected
and stored for further assays.

Histological analysis

After blood collection, the animals were sacrificed by decapitation
and their livers were removed. The harvested livers were excised,
and small sections were fixed in 10% phosphate-buffered formalin
for further histological analysis. The sections were stained with
hematoxylin-eosin (H&E) before investigation under blindfold
conditions with standard light microscopy by a pathologist
(magnification�400).

Evaluation of liver injury markers

The blood samples were collected and centrifuged at
14,000–20,000g for 15–20 min. The obtained sera were analyzed
for measurement of activities of alanine aminotransferase (ALT),
aspartate aminotransferase (AST) and alkaline phosphatase (ALP),
which are detected as a result of lysis or leakage from hepatocytes.
The assays were performed by a colorimetric method using a bio-
chemical analyzer (Hitachi 902 Automatic Analyzer; Hitachi,
Japan), according to previously described methods (Enomoto
et al. 2001; McGill et al. 2012).

Biochemical examination

To investigate the oxidative stress injuries, the biochemical assays
were performed. For this purpose, the excised liver samples were
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washed with ice-cold phosphate-buffered saline (PBS; 137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4)
and weighed. The liver samples were filtered using a 0.2 lm cell
strainer (SPL Life Sciences, Gyeonggi-do, Korea) and syringe rub-
ber plunger in cold PBS to obtain tissue homogenates. The homo-
genates were used to determine the tissue levels of
malondialdehyde (MDA) and the activities of superoxide dismu-
tase (SOD) and reduced form of glutathione (GSH).

Tissue malondialdehyde level assessment

Tissue concentrations of free malondialdehyde, an end-product
and marker of lipid peroxidation, were measured as described
by Ohkawa et al. (1979). Each liver homogenate (200 lL) was
diluted with 800 lL of PBS and mixed with 25 lL of 8.8 mg/
mL butylhydroxytoluene and 500 lL of 50% trichloroacetic acid.
The mixture was vortexed, incubated for 2 h on ice, and centri-
fuged at 2000g for 15 min (Pharmacia, Schio, Italy). The super-
natant (1 mL) was transferred into a tube and mixed with
75 lL of 0.1 M EDTA and 250 lL of 0.05 M 2-thiobarbituric
acid. The latter was boiled for 15 min and allowed to cool at
room temperature. Finally, the samples were spectrophotomet-
rically analyzed and the absorbance was measured twice at 532
and 600 nm (Yazdani et al. 2016).

Superoxide dismutase activity assessment

The activity of tissue superoxide dismutase, a most important
antioxidative enzyme, was measured based on the Paoletti and
Mocali (1990) method. A master solution was prepared by
adding 0.1 M PBS, 0.15 mg/mL sodium cyanide in 0.1 M
ethylenediamine tetraacetic acid (EDTA), 1.5 mM nitroblue
tetrazolium and 0.12 mM riboflavin. In brief, 100 lL of a serial
dilution of liver homogenates were pipetted into a 96-well plate
and mixed with 200 lL of the master solution. Ultimately, the
absorbance was measured at 560 nm using spectrophotometer
(ELISA reader) and the activity was expressed as SOD unit/mg
protein (Yazdani et al. 2016).

Glutathione level assessment

The glutathione level was determined using a Glutathione Assay
Kit (Sigma-Aldrich, MI, USA). Briefly, 10 mL of liver homogenate
and 150 lL of working solution (1.5 mg/mL DTNB, 6 U/mL gluta-
thione reductase, and 1� assay buffer) were added to a 96 well-
plate and mixed thoroughly. The plate was incubated for 5 min
before the 50 mL of NADPH solution (0.16 mg/mL) was added to
each well. The absorbance was spectrophotometrically measured
at 412 nm (Paglia & Valentine 1967).

Assessment of proinflammatory cytokines and factors

After collection of blood samples, they were centrifuged at 3500g
for 15 min to achieve the sera. Then, the concentrations of C-
reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis
factor-a (TNF-a) were measured using CRP, IL-6 and TNF-a
ELISA kits (Abcam, Cambridge, MA) using the Liu et al. (2001)
method (Saeedi Saravi et al. 2016).

Statistical analysis

All data were expressed as mean ± SD. Statistical analysis was per-
formed using SPSS 16.0 statistical software (Chicago, IL). The dif-
ferences between 3 or more groups, the experimental groups,
were analyzed by one-way analysis of variance (ANOVA), fol-
lowed by Tukey’s post test. Evaluation of the effects of two varia-
bles (APAP-induced hepatotoxicity vs. control and type of
treatment) was performed using two-way ANOVA followed by
the Bonferroni post test. p-Value <0.05 was considered statistic-
ally significant.

Results

Histological findings

Presence of APAP-induced hepatotoxicity was confirmed by H&E
histological analysis. The H&E staining of liver tissues sampled
from APAP-induced hepatotoxic mice have demonstrated focal
hepatocyte necrosis as well as increased infiltration of the inflam-
matory cells into the portal tract. Also, fatty degeneration and
central vein dilation were observed in the histological examination
(Table 1, Figure 1(A,B)). Otherwise, metformin at dose of 200 mg/
kg as well as NAC at dose of 100 mg/kgmarkedly reversed the
hepatocellular damages induced by APAP (Figure 1(C,D)).

Measurement of liver injury factors

The measurement of liver injury factors such as ALT, AST and
ALP enzymes levels in the studied groups were performed and
the results are presented in Figure 2. The examination showed a
significant increase in the tissue levels of the three enzymes in
control animals compared to the animals received subacute APAP
with no treatment (p< 0.001). This resulted from hepatocyte lysis
or leakage. The findings have demonstrated the significant hepa-
toprotective activity of metformin (100 and 200 mg/kg) in the ani-
mals received APAP through reduction in the levels of ALT, AST
and ALP enzymes (p< 0.01 and p< 0.001, respectively), while
50 mg/kg of metformin was observed to non-significantly decrease
the enhanced levels of these enzymes (p> 0.05). The results

Table 1. Histopathological evaluation of liver tissue obtained from control, APAP-induced hepatotoxic treated with either normal saline or metformin 200 mg/kg.

Hepato-celluler
Necrosis Inflammatory Reaction

Apoptosis Kuppfer cells
Fatty Changes

Vessels sinosoids
Group zonal Non zonal Paran chymatous Portal tracets Nu/10 Hypertrophy focal diffuse congestion Regeneration

APAP (250 mg/kg/d) – þ þ þ þ þ þ þþ 17.23 þ – þ þ –
Metformin (200 mg/kg/d)
þ APAP (250 mg/kg/d)

– � þ þ 6.23 – – – – –

NAC (100 mg/kg) þ APAP
(250 mg/kg/d)

– � � þ 5.17 – – – – –

Control – – þ – 3.891 – – – – –

(þþþ) severe disorder; (þþ) moderate disorder; (þ) weak disorder; (�) no effect.
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demonstrated no significant differences in the examined ALT,
AST and ALP levels between APAP/metformin 200 mg/kg and
APAP/NAC 100 mg/kg (p> 0.05)

Tissue antioxidant enzymes levels

As shown in Figure 3, analysis of the concentrations of liver tissue
MDA and activities of SOD and GSH in all experimental groups
of animals demonstrated no significant differences in the bio-
chemical parameters between the control group and the animals
treated with metformin at a dose of 200 mg/kg (p> 0.05). It is

observed that there was a significant difference in the three anti-
oxidant enzymes levels and activities between the APAP-induced
hepatotoxic and control groups (p< 0.001). Moreover, metformin
at a dose of 200 mg/kg, unlike the lower doses, significantly
decreased the liver tissue MDA levels in the mice treated with
APAP for 7 days (p< 0.001). It is demonstrated that treatment
with metformin exerts its hepatoprotective effects reducing
APAP-induced lipid peroxidation damages of liver tissue
(p< 0.001). The hepatoprotective role of metformin is confirmed
by the observation that the activity of SOD and GSH antioxidant
enzymes in the mice receiving subacute APAP significantly
increased following treatment with metformin (p< 0.001). On the

Figure 1. A and B: H&E staining of liver tissues isolated from CCl4-exposed rats demonstrates focal hepatocyte necrosis, as well as, increased infiltration of the inflamma-
tory cells into the portal tract in the APAP-induced hepatotoxic mice; Fatty degeneration and central vein dilation were obvious (magnification�400). C and D: No hepa-
tocellular necrosis and APAP-induced damage was observed in metformin (200 mg/kg)- and NAC (100 mg/kg)-treated mice (magnification�200).
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Figure 2. The liver tissue levels of injury biomarkers (ALT, AST and ALP) in the control and subacute APAP-treated BALB/c mice receiving normal saline,metformin (50,
100 and 200 mg/kg) and NAC (100 mg/kg). The values are expressed as mean ± SD and analyzed using one-way ANOVA method followed by Tukey’s post test. *p< 0.05,
**p< 0.01, ***p< 0.001 compared to APAP/normal saline group;þþþp< 0.001 compared to APAP/metformin 100 mg/kg group. ns: non-significant.
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other hand, treatment of APAP-exposed mice with NAC demon-
strated no significant differences in MDA and GSH levels and
SOD activity compared to APAP/metformin 200 mg/kg mice
(p> 0.05)

Tissue levels of pro-inflammatory factors

In addition to the antioxidant enzymes, the concentrations of
pro-inflammatory factors, including interleukin-6, tumor necrosis
factor-a and C-reactive protein were measured. Figure 4 demon-
strates that the serum concentrations of CRP, IL-6 and TNF-a
were enhanced following 7-days administration of APAP com-
pared to control animals (p< 0.001). According to the results,
metformin at doses of 100 and 200 mg/kg, despite 50 mg/kg, sig-
nificantly decreased the factor levels in the mice that received sub-
acute APAP (p< 0.05 and p< 0.001, respectively). Furthermore,
200 mg/kg of metformin exerted a significant hepatoprotective
effect compared to the lower dose (100 mg/kg; p< 0.001 for CRP
and p< 0.05 for TNF-a), while metformin at a dose of 200 mg/kg
demonstrated no significant differences in the tissue levels of the
pro-inflammatory cytokines IL-6 and TNF-a in comparison with
the control group and NAC-treated mice which were exposed to
APAP (p> 0.05).

Discussion

The objective of the present study was to examine the hypothesis
that metformin exerts a protective effect against APAP-induced
hepatotoxicity. It has been demonstrated that metformin at a dose
of 200 mg/kg significantly reverses the oxidant/antioxidant

imbalance induced by APAP toxicity. In this regard, we have
shown that metformin protects hepatocytes against lipid peroxida-
tion via significant decrement of MDA levels. Therefore, metfor-
min can diminish lipid peroxidation-induced disruption of the
phospholipid bilayer membrane and cell integrity, and eventually
inhibits the leakage of cytoplasmic components and the enzymes
into the blood and the subsequent cell necrosis (Walker et al.
2000; Hadi et al. 2012). On the other hand, metformin increased
the liver tissue levels of SOD and GSH, which were diminished in
the animals exposed to APAP during a 7-day period. The reports
have shown that APAP hepatotoxicity impairs the mitochondrial
antioxidant defenses (SOD and GPx enzymes) (Ramachandran
et al. 2011). It is noteworthy that, the hepatoprotective effects of
metformin was consistent with NAC, as a standard drug to pro-
tect hepatocytes against cellular necrosis in APAP-induced hep-
atotoxicity. Therefore, the importance of finding a protective
agent against mitochondrial dysfunction in APAP-overdose
patients markedly returns to the close correlation between the
release of biomarkers of mitochondrial damage and hepatocellular
necrosis (McGill et al. 2012).

A body of evidence has reported a significant contribution
between both intra- and extracellular ROS and liver injury (Bajt
et al. 2011). This is considered as a main mechanism for centri-
lobular hepatic necrosis, leading to acute liver failure (Larson
et al. 2005; Hanawa et al. 2008). As APAP, especially its reactive
metabolite NAPQI, produces oxidative stress-induced hepatocyte
injury, metformin is proposed to suppress the mitochondrial oxi-
dative stress and ROS production. The effect of metformin prob-
ably exerts through inhibition of JNK activation along with
stimulation of hypooxygenase (HO)-1 expression, resulting in
hepatoprotection against oxidative stress-induced injuries (de La
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Figure 3. The liver tissue levels of MDA and antioxidants SOD and GSH activity levels in the control and subacute APAP-treated BALB/c mice receiving normal saline,
metformin (50, 100 and 200 mg/kg) and NAC (100 mg/kg). The values are expressed as mean ± SD and analyzed using one-way ANOVA method followed by Tukey’s post
test. ***p< 0.001 compared to APAP/normal saline group;þþþp< 0.05 compared to APAP/metformin 100 mg/kg group. ns: non-significant.
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Rosa et al. 2005; Vishal 2008; Hadi et al. 2012; Kim et al. 2015).
APAP-induced oxidative stress results in lipid peroxidation, oxi-
dation of thiol-proteins, mitochondrial damage, altered calcium
homeostasis, and DNA damage (Jaeschke 2003). Otherwise, it is
believed that medical interventions can restore the scavenging
capacity for ROS and peroxynitrite in mitochondria (Saito et al.
2010; Knight et al. 2002; James et al. 2003; Bajt et al. 2003;
McGill et al. 2012). Furthermore, molecular docking analysis has
declared an interaction between metformin and CAT via hydro-
gen bonds, leading to hepatoprotective effects against oxidative
liver injury (Dai et al. 2014).

The results have demonstrated increased plasma levels of ALT,
AST and ALP in the APAP-exposed mice, suggesting that mito-
chondrial damage may be related to cell necrosis. The findings
are consistent with the report by McGill et al. (2012). The
enzymes were released from hepatocytes following the nuclear
DNA damage and cell death. We observed that metformin at the
same doses which normalize the oxidant/antioxidant imbalance,
decreases the abnormal elevating plasma levels of ALT, AST and
ALP in the APAP-induced hepatotoxic mice. This means that
metformin probably decreases the nuclear DNA damage and sub-
sequent cell death in the mouse liver after APAP overdose.

We found that a 7-day exposure to APAP causes an increased
liver tissue levels of IL-6, TNF-a and CRP in the examined mice.
Treatment with metformin (100 and 200 mg/kg) significantly nor-
malized the increased levels of the proinflammatory cytokines and
CRP, while no significant difference was observed compared to
the control group. There is growing evidence that extensive for-
mation of proinflammatory mediators, including proinflammatory

cytokines IL-6 and TNF-a, are extensively formed and neutrophils
accumulate into the liver after APAP overdose (Lawson et al.
2000; Das et al. 2010; McGill et al. 2012). Metformin decreases
the sensitization of hepatocytes to TNF-a-induced cell death
through activation of nuclear factor kappa B (NF-kB)
(Schoemaker et al. 2002). This can protect against TNF-a-
mediated inflammatory liver failure (Woudenberg-Vrenken et al.
2013). Furthermore, a direct anti-inflammatory effect of metfor-
min is exerted by inhibiting NF-jB through blockade of the
PI3K/Akt pathway. It is obvious that metformin demonstrates a
dose-dependent inhibition of interleukin-1b-induced release of the
proinflammatory cytokines IL-6 and -8 (Hadi et al. 2012). IL-6
and TNF-a can regulate inflammatory biomarkers such as
C-reactive protein (CRP) in acute toxicity (Zambon et al. 2006).

Epidemiological studies have suggested that metformin signifi-
cantly improves the viability of hepatocytes in fatty livers includ-
ing nonalcoholic fatty liver disease (NAFLD) and nonalcoholic
steatohepatitits (NASH) as well as hepatocarcinoma (Noto et al.
2012). In addition, metformin reduces the serum levels of ALT
and AST, enzymes releasing from injured hepatocytes, in NASH
(Angulo & Lindor 2002; Bugianesi et al. 2004; Angelico et al.
2007; Woudenberg-Vrenken et al. 2013). Although the underly-
ing mechanisms for the protective activity of metformin in the
complications is not well found, down regulation of TNF-a-
mediated signaling (Lin et al. 2000) along with the activation of
adenosine monophosphate kinase (AMPK) and AMPK-
dependent signaling pathways are described as possible mecha-
nisms for the effect (Zhou et al. 2001). Moreover, and the
augmentation of b-oxidation of fatty acids is suggested as
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Figure 4. The serum levels of pro-inflammatory factors (IL-6, TNF-a and CRP) in the control and subacute APAP-treated BALB/c mice receiving normal saline, metformin
(50, 100 and 200 mg/kg) and NAC (100 mg/kg). The values are expressed as mean ± SD and analyzed using one-way ANOVA method followed by Tukey’s post test.
*p< 0.05, ***p< 0.001 compared to APAP/normal saline group;þp< 0.05 compared to APAP/metformin 100 mg/kg group; þþþp< 0.001. ns: non-significant.
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an essential factor, which is mediated by AMPK-dependent path-
way (Zhou et al. 2001).

Conclusions

In conclusion, for first time, the hepatoprotective effect of metfor-
min was demonstrated in the APAP-induced toxicity in mice. The
study has shown that metformin can exert an oxidant/antioxidant
balance and limit the inflammation and hepatocyte injury, and
subsequently increases the cell survival in the APAP-induced hep-
atotoxicity. The investigation was performed to present a new
treatment to attenuate the hepatotoxicity induced by APAP
overdose for further interpretation to humans.
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