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Abstract
In this study, Echium amoenum (known as borage) petals, popular as a medicinal herb, was used for producing copper nanoparticles 
(CuO NPs) for the first time. Since borage metabolites are bioactive, they were used as bioreductive agents for synthesizing CuO 
NPs. For this, phytochemical compositions of EA extract were analyzed qualitatively before fabricating CuO NPs. Various measure-
ments were conducted to characterize the CuO NPs, including UV–vis, FTIR, SEM–EDS, TEM, XRD, DLS, and the zeta potential. 
Additionally, EA-CuO NPs were examined for antimicrobial, free radical scavenging and cytotoxic activities. The surface plasmon 
resonance peak of the EA-CuO NPs was identified as 346.6 nm based on UV–visible spectroscopy. FTIR spectra proposed possible 
functional groups associated with EA-CuO NP formation. According to the SEM and TEM images, the EA-CuO NPs were spherical 
and ranged from 30 to 40 nm. The crystallites were estimated to be particulate at 28.5 nm in size, with the copper-to-oxygen ratio of 
60.16:24.96 determined by XRD and EDX. There was an approximate IC50 value of 35.46 µg/ml for the DPPH and 70.11 µg/ml for the 
H2O2 scavenging activity of EA-CuO NPs. A MIC value of 80 µg/ml was obtained for EA-CuO NPs against Staphylococcus aureus, 
Staphylococcus saprophytic, and Klebsiella pneumonia. However, MIC values for EA-CuO NPs against Pseudomonas aeruginosa 
and Candida species were 160 and 600 µg/ml, respectively. Based on the findings, EA-CuO nanoparticles have the potential to be 
used as an alternative to antibiotics to treat antibiotic-resistant pathogens. Given this, it would be prudent to conduct detailed studies 
into the mechanism of action and side effects of EA-CuO NPs before they are applied as antimicrobial agents for therapeutic purposes.

Keywords  Biogenic CuO NPs · Antibacterial activity · Antifungal activity · Antioxidant capacity · Echium amoenum

1  Introduction

Recent studies have found that most common antimicro-
bial compounds are no longer effective against at least 
some bacteria due to increasing antibiotic resistance [1]. 

Nanotechnology is a new research area recently introduced 
to medicine and treatment. Though nanotechnology has been 
able to solve many problems in various sciences, concerns 
exist regarding their host toxicity and environmental chal-
lenges in medical sciences. Since metal NPs are widely dis-
tributed throughout the environment and cause poisoning 
when consumed or exposed to living organisms, various 
research efforts have been conducted to improve their prop-
erties, reduce their toxicity, and increase their biocompat-
ibility [2]. Even with some limitations, metal nanoparticles 
are still promising therapeutic agents, especially for can-
cers and other drug-resistant diseases. Currently, scientists 
are developing alternatives to synthesizing metal NPs that 
reduce their toxicity and improve their consumption. Many 
scientists are currently looking into the possibility of engi-
neering green NPs by bioactive molecules and living organ-
isms. Various metal NPs with favorable biological properties 
have been synthesized using polysaccharides, fatty acids, 
proteins, nucleic acids, and other biomolecules [3, 4].
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Cu and CuO NPs are applied in many industries, including 
textiles, paints, and agriculture, due to their moderate toxic-
ity, favorable stability, and cost-effective production. Several 
studies have demonstrated that CuO NPs have promising anti-
microbial, antioxidant, antiviral, and anticancer properties [3]. 
Cu-based NPs can be produced physically, chemically, or bio-
logically depending on the intended purpose. Therefore, the 
properties of the desired products must be considered [5]. CuO 
NPs with biological applications can be fabricated using vari-
ous techniques, including combinations of biological and non-
biological approaches. Exploiting plant bioactive compounds 
to prepare Cu NPs with therapeutic and medicinal potential is 
an intriguing opportunity. In the meantime, medicinal plants 
are effective because they are non-toxic, and their metabolites 
are known to have medical properties.

E. amoenum is an annual plant in the family Boragi-
naceae, Echium genus. It is considered one of the most 
important herbal medicines in traditional Iranian medicine. 
Several bioactive compounds have been found in the purple-
blue petals of E. amoenum, including polyphenols, antho-
cyanins, glucosides, and others [7]. These compounds are 
known for their health-promoting properties [8, 9]. There is 
a high reducing capacity in the metabolites of E. amoenum 
that allows them to form and stabilize metal NPs [10]. It 
has been demonstrated that copper, silver, gold, zinc, sele-
nium, and iron NPs can be synthesized biologically using 
the metabolites of E. amoenum [6].

This study aims to produce biogenic CuO NPs by using 
the hydroalcoholic extract of E. amoenum as a reducing and 
capping agent. Afterward, CuO NPs were investigated for 
their antimicrobial, antioxidant and cytotoxic activities.

2 � Experimental

2.1 � Chemicals and reagents

MTT reagent ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide), crystal violet, and Folin–Ciocâlteu reagents 
were purchased from Sigma Aldrich chemical company. 
CuSO4·5H2O, H2SO4, and BaCO3 were provided by Merck 
Chemical Co. (Germany, USA). All other chemicals were 
laboratory-quality as received. The standard bacterial strains, 
including methicillin-resistant Staphylococcus aureus, MRSA 
(ATCC 33591), Klebsiella pneumoniae (ATCC 700603), and 
Staphylococcus saprophyticus (ATCC 6538P) and multidrug-
resistant Pseudomonas aeruginosa (Clinical isolate), Candida 
glabrata (ATCC 90030), and Candida albicans (ATCC 10231), 
were provided from a microorganism culture collection by the 
Iranian Research Organization for Science and Technology 
(IROST), Tehran, Iran. The KB cell line was sourced by the 
cell bank of the Tehran Pasteur institute, Tehran, Iran.

2.2 � Plant sample preparation and ethanol 
extraction

The petals of E. amoenum were collected from the Khor-
ramabad Mountain area (Lorestan, Iran). The petals were 
washed with deionized water and dried in the dark for 
10 days. After that, 5 g of the dried petals was extracted 
in 100 mL of ethanol under incubation conditions at 45 °C 
by a bath-sonication. After 6 h, the ethanol extract of E. 
amoenum (EA extract) was passed through a Whatman filter 
paper. The filtrate of EA extract was used to synthesize CuO 
NPs and phytochemical studies.

2.3 � Qualitative phytochemical Analysis of EA 
extract

2.3.1 � Total phenolic and flavonoid contents

Total phenols in the E. amoenum petal extract were deter-
mined using the Folin-Ciocalteu (FC) colorimetric method. 
Briefly, 1.0 mg of EA (ethanol solution) was mixed into 
3 mL of 10% (V/V) FC reagent and 1.0 ml of Na2CO3 (5%, 
W/V). The sample was then vortexed for 30 min and incu-
bated for 15 min at 45 °C. Assays of total flavonoids were 
conducted by adding methanol solutions of Al(NO3)3 (10% 
W/V) and Pb(C2H3O2)2 (0.1% W/V) to EA extract. The 
change in color of the reaction solution showed that flavo-
noids were present in the extract [11].

2.3.2 � Total tannin content

The total tannin content in the EA extract was confirmed 
using the FeCl3 reagent. The appearance of blue or green 
colors usually indicates the presence of condensed or hydro-
lyzed tannins [12].

2.3.3 � Total saponin content

The saponin content of the EA extract was determined by 
adding 10 mg of the extract to 10 ml of deionized water. 
Saponins were detected by forming a foam layer over the 
solution after shaking vigorously [12].

2.3.4 � Total alkaloid assay

The alkaloids in the EA extract were detected using Hag-
er’s reagent. Picric acid (1%) and EA extract in a ratio 
of 2:1 were mixed in a glass container. The presence of 
alkaloids in the EA extract was demonstrated by forming 
a yellow precipitate in the sample [12].
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2.3.5 � Total terpenoid assay

Five milliliters of EA extract was added to 2 ml chloroform 
in a 10-ml glass tube. Afterward, 3 ml of H2SO4 (98%) was 
gently added to the reaction sample and allowed to react. 
After a few min, terpenoids were detected by forming a 
reddish-brown ring interface in the reaction solution [13].

2.3.6 � Total steroidal glycoside

The presence of glycosides was evaluated using two different 
methods. In the first method, 2.0 ml of acetic acid (glacial) 
was mixed with 2.0 ml of chloroform and added to 2.0 ml of 
EA extract. In the meantime, the mixture was cooled, and 
then 1 ml of H2SO4 (98%) was added. The appearance of 
green color indicates glycan aglycone steroidal glycoside in 
the reaction sample [13]. For the second method, 2.5 ml of 
glacial acetic acid was mixed with 0.5 ml of FeCl3 solution 
(1% W/V) and then added to 5 ml of EA extract. The forma-
tion of a brown ring has been attributed to cardiac steroidal 
glycosides after adding 1 ml of H2SO4 [12].

2.4 � Biosynthesis of CuO NPs by EA extract

In this study, CuO-NPs were fabricated using ethanol 
extract of EA as a capping and reducing agent following 
a hydrothermal process described by Prakash et al. (2021) 
under optimal conditions [14]. In a 250-ml flask, 20 ml of 
EA extract was dissolved in 40 ml deionized water (DW). 
Forty milliliters of CuSO4·5H2O (3 mM) solution was added 
to the EA extract while stirring on a magnetic hot plate at 
65 °C. Changing the color of the reaction sample from blue 
to brownish-red implied the formation of EA-CuO NPs. 
Additionally, the formation of EA-CuO NPs was monitored 
using a UV–visible spectrophotometer (Jenway UV–vis 
model 6505, UK) at 200–800 nm. The EA-CuO NPs were 
then precipitated using centrifugation at 14,000 rpm at 4 °C 
for 15 min. To dry the pellets, they were first washed twice 
in DW and then placed in an oven at 100 °C.

2.5 � Characterization of biogenic CuO‑NPs

The physicochemical characteristics of EA-CuO NPs were 
examined using the following analytical methods.

FTIR spectroscopy was used to investigate possible func-
tional groups in biogenic CuO NPs. For this purpose, EA-
CuO NP powder was mixed with KBr and filled into discs at 
high pressure. The FTIR spectrum was recorded on an FTIR 
spectrophotometer (FS 66/s, Bruker Optics, Billerica, MA) 
over a scanning range of 400–4000 cm−1. FE-SEM imaging 
and energy-dispersive X-ray analysis (MIRA3, TESCAN, 
Czech Republic) were performed to analyze the morphology 

and elemental composition. ImageJ Ver.2 (NIH, USA) soft-
ware was used to calculate particle size distributions from 
SEM images. TEM image was taken on Philips EM 208S 
(Netherlands). X-ray powder diffraction analysis was con-
ducted using an X-ray diffractometer (Bruker, D8 Advance, 
Germany) equipped with Cu K radiation of 0.15418 nm at 
30 kV and 15 mA applying a scanning rate of 0.4°/min from 
10 to 80°. The crystallite size and phase type of EA-CuO 
NPs were calculated using XPert HighScore Plus software 
Ver.2.2.

2.6 � Antimicrobial assay

The antimicrobial activity of EA-CuO NPs was evaluated by 
well-diffusion agar (WDA). In the 8-cm diameter bacterial 
culture plates, 4 wells were created using a sterile punch. 
Then, fresh bacterial cells were lawn on agar plates using a 
sterile cotton swab. Thirty microliters of different concen-
trations of EA-CuO NPs (25, 50, 100, and 200 µg/ml) were 
separately poured into the wells. The plates were incubated 
at 37 °C for 24 h to appear growth inhibition zones. Micro-
dilution method was used to determine the minimum inhibi-
tory concentration (MIC). This experiment was conducted 
in a 96-well microplate in which 35 µl dilutions of EA-CuO 
NPs (0–200 µg/ml) were added to 65 µl of MHB culture 
media containing 0.5 McFarland densities (1.5 × 108 CFU/
ml) of bacterial cells. MIC values were determined by meas-
uring the optical density of bacteria at 600 nm after 24 h of 
incubation at 37 °C. Based on the MIC values, minimum 
bactericidal concentrations were also calculated [15].

2.7 � DPPH scavenging assay

DPPH scavenging was used to determine the antioxidant 
capacity of EA-CuO NPs and EA extract. For this purpose, 
various concentrations of EA-CuO NPs or EA extract were 
added to the DPPH reagent (0.15 mM in methanol). The 
mixtures were placed in darkness for 30 min to allow the 
reaction to complete. The ascorbic acid (AA) served as a 
positive control. The scavenging efficacy of DPPH was cal-
culated using the following Eq. (1):

2.8 � Cytotoxicity assay of CuO‑NPs

Human epidermal nasopharyngeal carcinoma (KB cell line) 
was used for toxicity assessment of EA-CuO-NPs and EA 
extract. EA-CuO NPs and EA extract cytotoxicity was exam-
ined using different concentrations (0–500 µg/ml). Cells were 
seeded in T-25 SPL culture flasks containing 5 ml of DMEM 

(1)

Scavenging eff icacy(%) =
Blank (A0) − Sample (A)

Blank (A0)
× 100
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supplemented with 10% FBS until 70% confluence was 
achieved. Afterward, treatments were conducted in 96-well 
plates on 104 cells in each well and incubation was done for 24 h 
under standard conditions. The cell viability was determined by 
adding 10 µl of MTT reagent to cell-grown wells and the plate 
was incubated for 4 h. Then, 100 µl of DMSO was slowly pipet-
ted into each well. Finally, the sample absorbance was measured 
at 520 nm using an ELISA reader. Cell viability was calculated 
as a percentage compared with untreated cells (negative control).

2.9 � Statistical analysis

All experiments were conducted in triplicate and at least 
three times. The results are presented as the means and 
standard deviations (SD). Cell viability was compared 
between control (untreated) and treated groups using a one-
way analysis of variance with a 95% confidence interval.

3 � Results and discussion

3.1 � Qualitative analysis of EA phytochemicals

Colorimetric analysis was employed to identify phytochemical 
compounds in EA extract. As shown in Table 1, phenolics, fla-
vonoids, tannins, alkaloids, aglycone steroidal glycosides, and 
terpenoids were identified in the EA extract. Numerous studies 
have previously established that E. amoenum contains major 
bioactive metabolites such as rosmarinic acid, naphthoquinone, 
flavonoids, anthocyanins, tannins, alkaloids, steroidal glyco-
sides, and terpenoids [7–9, 16]. Additionally, bioactive metab-
olites responsible for synthesizing the most NPs include poly-
phenols, flavonoids, alkaloids, tannins, and reducing sugars [10, 
17, 18]. Consequently, EA-CuO NPs synthesized by EA extract 
have a high bioactivity that can be attributed to several active 
metabolites that act on the NPs to reduce/cap and stabilize them.

3.2 � Biosynthesis of EA‑CuO NPs by EA extract

EA-CuO NPs were biologically synthesized using EA extract 
metabolites as reducing and capping agents. Upon adding the 
EA extract to the CuSO4 solution, the color gradually changed 
from blue to brownish red due to EA-CuO NP formation (Fig. 1a). 

Reddish-brown color is attributed to inter-band transitions 
between Cu electrons in CuO NP structures [19]. According to 
the findings, the appearance of certain bands at 340–360 nm could 
be attributed to clusters of [Cu–O–Cu]n in CuO samples [20].

UV–vis spectroscopy demonstrated a typical surface plas-
mon resonance peak at 346.6 nm (Fig. 1b). As calculated by 
the Tauc equation, the band gap of EA-CuO NPs was 3.58 eV 
during direct interband transitions (Fig. 1c). As reported in the 
literature, there is a direct interband transition at 3.25 eV in 
bulk CuO and an indirect band gap between 1.0 and 1.7 eV 
[21]. According to this study, the bandgap of EA-CuO NPs was 
larger than that of bulk CuO due to the magnitude effect of the 
NPs. Furthermore, due to the narrow distribution of the parti-
cles, it can be assumed that they fall within the nanoscale [22].

3.3 � Morphological characterization of EA‑CuO NPs

EA-CuO NPs were analyzed using SEM and TEM images 
to determine their shape and size distribution. As shown in 
Fig. 2a and b, EA-CuO NPs ranged from 30 to 40 nm, as 
indicated by the size labels in the SEM image. Although 
SEM can reveal the surface morphology of NPs, it cannot 
estimate their size accurately. According to Fig. 2a, regard-
less of the accumulation of NPs in some regions, they 
appeared as spheres covered by EA biomolecules. Further-
more, the TEM image confirmed the SEM measurement 
of NP size and capping (Fig. 2c). In the EDS spectrum of 
EA-CuO NPs, prominent peaks correspond to Cu at 2.1 and 
8.6 keV. The EDS pattern established carbon and oxygen 
compartments in the backbone of EA-CuO NPs at 0.7 and 
1.3 keV, respectively (Fig. 2d). As shown in Fig. 2 e, the 
size distribution of EA-CuO NPs was determined using both 
TEM and SEM scaling and ImageJ software to estimate the 
particle size range. According to this graph, EA-CuO NPs 
possessed 30–40 nm. In various studies, Cu NPs with bio-
logical origins have been demonstrated to have irregular 
shapes or a variety of nanostructures, including hexagonal, 
cylindrical, triangular, and prismatic shapes with varying 
particle sizes based on reducing and capping agents [23, 24].

3.4 � FTIR analysis

As seen in Fig. 3 a, the FTIR spectra demonstrated that 
functional groups in the EA extract metabolites play an 

Table 1   Bioactive metabolites present in EA extract based on qualitative assay methods

Total phytochemical Appearance Result Total phytochemical Appearance Result

Polyphenol Blue Positive Alkaloid Red Positive
Flavonoid Yellow Positive Terpenoid Reddish-brown Positive
Tannin Violet Positive Saponin – Negative
Cardiac steroidal glycosides – Negative Aglycone steroidal glycoside Green Positive
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important role in capping and stabilizing the EA-CuO 
NPs. An apparent peak at 3349.1 cm−1 in the EA extract 
spectrum was attributed to O–H stretching, which nar-
rowly shifted to 3324.5 cm−1 in the EA-CuO NP spec-
trum [25]. In the EA extract spectrum, peaks at 2965.9 
and 2902.2  cm−1 are attributed to the CH2 and CH 
stretching in the aliphatic backbone [22]. There were 
significant differences in signal strength for the peaks 

at 1814.0, 1028.1, and 929.8 cm−1 when compared to 
EA extract, with a few slight shifts (1715.7, 978.9, and 
831.5  cm−1) in EA-CuO NP spectrum indicating that 
polyphenols, carboxylic acids, nitro compounds, and 
alcohols present in EA extract play an important role 
in reducing and capping process. The appearance of a 
stretching peak at 435.5 cm−1 is related to Cu–O bonds 
of EA-CuO NPs that loaded on EA extract [27–29].

Fig. 1   a Color shift of the 
mixture with the formation of 
EA-CuO NPs during 24 h, b 
UV–vis spectra of EA-CuO 
NPs after complete reaction for 
24 h and c Tauc’s plot of the 
EA-CuO NPs

Fig. 2   EA-CuO NP analytics. a, b TEM image, c SEM image, d elemental composition analysis (EDX), and e Particle size distribution
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3.5 � XRD analysis of EA‑CuO NPs

The XRD pattern peaks observed for EA-CuO NPs synthe-
sized by EA extract are shown in Fig. 3b. Intense diffrac-
tion peaks at 2Ɵ angles of 30.9°, 34.2°, 37.2°, 48.5°, 54.4°, 
58.4°, 61.5°, 67.7°, 69.3°, and 77.2° correspond to 110, 002, 
111, 202, 020, 202, 113, 311, 113, and 004 miller planes, 
respectively. These diffractions agreed with a typical mono-
clinic CuO NP nature based on literature [30, 31]. Accord-
ing to the JCPDS standard, EA-CuO NPs showed complete 
agreement by JCPDS card no. 801268. The crystallite par-
ticle size was calculated from an XRD spectrum and was 
found to be 18.32 nm using Debye–Scherrer’s Eq. (2):

where D is the particle size (nm), k is the Scherrer constant = 0.94, 
λ represents the X-ray wavelength (1.54060 Å), β is the full-width 
at half maximum of the peak, and 2 θ is the Bragg’s angle.

3.6 � Dynamic light scattering and zeta potential 
analyses

Size distribution (dynamic light scattering) of EA-CuO 
NPs was measured as hydrodynamic diameters ranged 
10–1000 nm as shown in Fig. 3c. The Brownian motion of 
NPs causes them to scatter the irradiated light at various 
intensities. Based on the intensity of dispersed light, the zeta 

(2)D =
k�

�Cos�

average can be calculated for NPs. Accordingly, the zeta 
average is the maximum intensity of dispersed NPs in hydra-
tion form in an aqueous phase [32]. In this study, the zeta 
average of EA-CuO NPs was determined to be 77.22 nm. As 
predicted, the zeta average value was greater than NP size 
calculated by SEM, TEM, and XRD analyses. As seen in 
Fig. 3d, the zeta potential of EA-CuO NPs was calculated to 
be − 14.53 mV. In addition, zeta potentials are used to esti-
mate the stability of synthetic nanoparticles by analyzing the 
attractions and repulsions caused by fluctuations in charge 
density [30]. Literature indicated that NPs with surface 
charges outside the range of − 30 mV and + 30 mV exhibit 
greater electrostatic stability. Meanwhile, bioactive metabo-
lites’ role in the stability of NPs was well-established by 
many studies. Consequently, the presence of capping agents 
is crucial to prevent the aggregated NPs from forming under 
physiological conditions [30, 32, 33].

3.7 � Antimicrobial activity of EA‑Cu NPs

The antibacterial activity of EA-CuO NPs was examined 
against different bacteria and fungi strains. As seen in 
Fig. 4, growth inhibition of EA-Cu NPs was determined 
as dose-dependent modes for all microorganisms. Based 
on well diffusion agar assay, the maximum inhibition at 
200 μg/ml of EA-CuO NPs was found for K. pneumonia 
and then S. saprophyticus and S. aureus with zone diame-
ters of 30.4, 25.6, and 25.3 mm, respectively. According to 
Table 2, the MIC values of all treatments were consistent 

Fig. 3   a FTIR spectroscopic 
pattern of EA-CuO NPs and 
EA extract, b XRD pattern of 
EA-CuO NPs, c particle size 
distribution of EA-CuO NPs 
(DLS), and d zeta potential of 
EA-CuO NPs (surface charge) 
in an aqueous phase
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with WDA results. In addition, S. aureus MRSA was 
inhibited completely at a MIC value of 80 μg/ml, whereas 
P. aeruginosa was more resistant as compared to other 
bacterial strains.

Metal NPs have the unique property of having a large 
surface area relative to their volume, which gives them 
enhanced reactivity against various pathogens [34]. 
According to several studies, Cu NPs display antimicro-
bial activity after attaching to the plasma membrane by 

generating free reactive oxygen species (ROS) [12, 35]. It 
has been demonstrated that Cu + ions can readily cross the 
lipid bilayer and enter the cytosol, leading to the genera-
tion of ROS and the oxidation of proteins and lipids. Fur-
thermore, Joseph et al. (2016) suggest that NPs possess a 
high electrostatic attraction, which results in bacterial cells 
releasing components [36].

Various factors influence the biological properties of Cu NPs, 
such as their size, capping agents, and polarity. In many respects, 

Fig. 4   Antibacterial activity assay of EA-Cu NP antibacterial activ-
ity assay of (a, b, c) against S. aureus and S. saprophyticus (gram-
positive bacteria), d, e, f against K. pneumonia and P. aeruginosa and 
g, h, i against C. glabrata and C. albicans. The graphs present zone 

inhibitions regarding corresponding plates at the right and left sides. 
The data are presented as mean ± SD from three replicates. Different 
superscripts display differences between treatements (p-value < 0.05)
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the results of this study are in agreement with those obtained by 
Punniyakotti et al. (2020) [37]. In their study, Cu NPs synthesized 
from Cardiospermum halicacabum leaf extract had high antimi-
crobial activity against P. aeruginosa (MTCC 424), E. coli (MTCC 
4296), and S. aureus (MTCC 3160). Our study corresponds with 
previous studies in demonstrating the importance of particle size, 
which has higher antimicrobial effects at a scale below 100 nm [27]. 
Furthermore, coating agents also play an active role in biocom-
patibility and stability within the physiological environment. This 
study demonstrated the role of biological coatings in Cu NPs’ bio-
logical activity, which is consistent with other studies. For example, 
Yugandhar et al. (2018) showed that Cu NPs prepared by Syzygium 
alternifolium plant extract has a synergistic antimicrobial effect with 
antibiotics. In addition, they reported that the anticancer effect of 
biological Cu NPs was significantly more effective [32].

Moreover, differences in the antimicrobial potency of NPs 
can be attributed to bacterial cell structure. The present study 
found greater antimicrobial effects against Gram-positive 
bacteria than against Gram-negative bacteria and fungi. This 
implies that the ability to bind NPs to biomolecules in bac-
terial cell walls may be crucial. According to Menazea and 
Ahmed (2020), CuNPs’ antimicrobial activity against Gram-
positive bacteria may be attributed to their strong binding to 
carboxyl and amine molecules on bacteria’s surfaces [38]. 
As Kumar et al. (2021) suggested, Cu ions interact with the 
bacterial genome and disrupt gene expression [39].

Observations revealed that EA-CuO NPs had a weaker 
antifungal activity than their antibacterial activity, so the 
treatment dose was increased to 1000 µg to observe fungal 
inhibition. In this case, the antifungal MIC was determined 

to be 600 μg/ml (Table 2). According to Poonguzhali et al. 
(2022), chitosan-coated Cu NPs possess the most antibacte-
rial activity against Staphylococcus sp. and Pseudomonas 
sp. and the least antifungal activity against Candida sp. and 
Aspergillus sp. [40]. According to their findings, Cu NPs 
showed greater antifungal activity with increasing doses up 
to 300 μg/ml. Our results indicate that increasing the dose of 
EA-CuO NPs inhibited the growth of fungi effectively. Evi-
dence suggests that high-dose treatments could kill fungal 
strains, but such treatments should be considered restricted 
in practice because of the cytotoxicity effects of the NPs. 
In this study, EA-CuO NPs demonstrated increased effec-
tiveness against sensitive and resistant bacterial and fungal 
pathogens. The studies indicated that Cu NPs might exert 
different antimicrobial activities against different species of 
bacteria and fungi depending on the physicochemical prop-
erties of the NPs and the type of pathogens.

3.8 � Antioxidant capacity of EA‑CuNPs

EA-CuO NPs were examined for antioxidant activity based on 
DPPH scavenging as well as H2O2 inhibition measurements in 
comparison with ascorbic acid (AA) and EA extract. For both 
assessments, IC50 values for EA-CuO NPs, AA, and EA extract 
were calculated based on concentrations ranging from 0 to 
300 µg/ml. DPPH scavenging capacities of EA-CuO NPs, EA 
extract, and AA were determined to have IC50 of 35.46, 37.43, 
and 95.31 g/ml, respectively (Fig. 5a). As shown in Fig. 5 b, 
EA-CuO NPs were found to have IC50 of 70.11 µg/ml against 
free H2O2. Furthermore, EA extract and AA were inhibited by 

Table 2   Antibacterial 
performance of EA-Cu NPs: the 
diameter of growth inhibition 
zone and MIC for various 
microorganisms

Microorganism Concentration (µg/ml)

25 50 100 200 Inhibition at MIC MIC

S. aurous 5.1 ± 0.8 10.4 ± 2.21.0 11.2 ± 2.3 25.6 ± 3.2 11.4 ± 4.1 80
S. saprophyticus 8.5 ± 0.9 10.8 ± 1.0 15.3 ± 2.1 25.3 ± 3.7 13.7 ± 3.8 80
K. pneumoniae 0 ± 0.0 15.4 ± 2.3 20.1 ± 3.4 30.4 ± 5.2 21.1 ± 6.7 80
P. aeruginosa 5.2 ± 0.2 8.3 ± 2.7 14.7 ± 3.6 16.1 ± 4.2 10.6 ± 2.9 160
C. glabrata 0 ± 0.0 9.4 ± 2.5 10.3 ± 3.2 12.5 ± 2.6 28.2 ± 6.1 600
C. albicans 3.1 ± 0.4 11.5 ± 1.3 13.9 ± 2.4 16.1 ± 3.6 31.3 ± 7.0 600

Fig. 5   Antioxidant capacity of 
EA-CuO NPs. a DPPH inhibi-
tion activity of EA-CuO NPs 
compared with EA extract and 
AA. b H2O2 inhibition activity 
of EA-CuO NPs compared with 
EA extract and AA along with 
their corresponding IC50

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442



UNCORRECTED PROOF

Journal : Large 13399 Article No : 4796 Pages : 11 MS Code : 4796 Dispatch : 29-8-2023

Biomass Conversion and Biorefinery	

1 3

H2O2 with IC50 values of 56.80 and 37.98, respectively. This 
antioxidant potential of EA-CuO NPs is attributed to their abil-
ity to inhibit free radicals, inhibit enzymatic chain reactions, 
and, most importantly, inhibit hydrogen absorption [41]. The 
antioxidant properties of nanoparticles are largely attributed to 
their ability to neutralize free radical oxygen species [34, 42]. 
The presence of bio-reducing groups in the structure of biogenic 
NPs has been found to confer substantial antioxidant activity 
on these molecules [43]. As shown by Rehana et al. (2017), 
biogenic Cu NPs possess the capability of neutralizing various 
types of free radicals [42]. According to Din et al. (2017), plant 
extracts containing flavonoids, polyphenols, sugars, and tannins 
increased the antioxidant activity of biogenic CuNPs [44].

3.9 � Cytotoxicity effects of EA‑CuO NPs

EA-CuO NPs were dose-dependently cytotoxic to the KB 
cell line, so increasing its concentration drastically reduced 
cell survival. In Fig. 6, EA-CuO NPs exhibited more cyto-
toxicity than EA extract, so their IC50 values were 15.86 
and 40.60  μg/ml, respectively. Numerous studies have 
established that NPs exert their toxicity through a variety of 
mechanisms, including metabolic as well as structural inter-
actions [39, 45]. Ghasemi et al. (2022) examined the cyto-
toxicity of biogenic Cu NPs against SW480 Human Colon 
Cancer Cell Lines. They observed that Cu NPs disrupt the 
integrity of cell membranes and inhibit metabolic pathways 
by generating free radicals within cells [46]. Since biogenic 
nanoparticles are biocompatible, they possess lower toxicity 
than chemical-based ones and display fewer disruptions to 
normal cell functions [47]. Although EA-CuO NPs exhibit 
more toxic properties than EA extract, they may moderate 
their toxic effects and enhance their biocompatibility [48].

4 � Conclusion

In the present study, an attempt was made to synthesize 
CuO NPs, using petal extract from E. amoenum as a 
reducing and capping agent. The biogenesis of EA-CuO 
NPs was conducted as anticipated, with favorable prop-
erties and bioactivities. According to the physiochemical 

characteristics, EA-CuO NPs have a spherical shape and 
are highly pure with a size below 100 nm. According to the 
results, EA-CuO NPs displayed broad antimicrobial activity 
against bacterial and fungal strains. However, EA-CuO NPs 
demonstrated the strongest antibacterial activities against 
Gram-positive bacteria and weak antifungal activity against 
fungi. The antioxidant capacity of the EA-CuO NPs was 
also demonstrated to be satisfactory compared with other 
reports. Accordingly, this study may provide evidence of the 
importance of the biological functions of EA extract in cap-
ping CuO NPs and improving their bioactivity. Therefore, 
bioactive therapeutic metabolites, such as flavonoids, poly-
phenols, and terpenoids, contained in E. amoenum extract 
can affect the behavior of synthesized CuO NPs and their 
side effects. In our study, we found that EA-CuO NPs have 
promising bioactivity; however, more extensive trials will 
be needed to confirm their therapeutic efficacy.
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Fig. 6   Cell cytotoxicity assay. a 
Exposure of different concentra-
tion of EA-CuO NPs (0–500 μg/
ml) on KB cell line based on 
IC50 values and b effect of 
different concentration of EA-
CuO NPs (0–500 μg/ml) on the 
viability based on cell density
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