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Abstract
The main objectives of this study were to (i) assess variation within fine particles (PM2.5) and tropospheric ozone (O3) time

series in Khorramabad (Iran) between 2019 (before) and 2020 (during COVID-19 pandemic); (ii) assess relationship

between PM2.5 and O3, the PM2.5/O3 ratio, and energy consumption; and (iii) estimate the health effects of exposure to

ambient PM2.5 and O3. From hourly PM2.5 and O3 concentrations, we applied both linear–log and integrated exposure–

response functions, city-specific relative risk, and baseline incidence values to estimate the health effects over time. A

significant correlation was found between PM2.5 and O3 (r =-0.46 in 2019, r =-0.55 in 2020, p\ 0.05). The number of

premature deaths for all non-accidental causes (27.5 and 24.6), ischemic heart disease (7.3 and 6.3), chronic obstructive

pulmonary disease (17 and 19.2), and lung cancer (9.2 and 6.25) attributed to ambient PM2.5 exposure and for respiratory

diseases (4.7 and 5.4) for exposure to O3 above 10 lg m-3 for people older than 30-year-old were obtained in 2019 and

2020. The number of years of life lost declined by 11.6% in 2020 and exposure to PM2.5 reduced the life expectancy by

0.58 and 0.45 years, respectively in 2019 and 2020. Compared to 2019, the restrictive measures associated to COVID-19

pandemic led to reduction in PM2.5 (-25.5%) and an increase of O3 concentration (? 8.0%) in Khorramabad.
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Abbreviations
RR Relative risk

BI Baseline incidence

AP Attributable proportion

NC Number of cases

NE Number of excess cases

SOMO35 Sum of O3 means over 35 ppb

RD Respiratory diseases

COPD Chronic obstructive pulmonary disease

LC Lung cancer

IHD Ischemic heart disease

IER Integrated exposure–response

YLL Years of life lost

ELR Expected life remaining

1 Introduction

Air pollution due to industrialization, urbanization, and

population growth is one of the global health issue in the last

century (Guan et al. 2016; Landrigan et al. 2018; Neira

2019), especially in developing Middle Eastern countries

characterized by dust storms such as Iran (Farzadfar et al.

2022). Therefore, numerous epidemiological studies were

conducted about chronic and acute effects of exposure of

population to ambient air pollutants (Ostro et al. 2018; Toe

et al. 2021). Particulate matters (PM2.5 and PM10), tropo-

spheric ozone (O3) and nitrogen dioxide (NO2) are among

the most threatening air pollutants in cities with harmful

effects on human health (De Marco et al. 2018; Sicard et al.

2019; Mannucci 2022). Previous studies have reported a

strong association between exposure to air pollutants (PM2.5,
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PM10, O3 and NO2) and cardiovascular and respiratory dis-

eases, and premature mortality (Anderson 2009, Khaniabadi

et al. 2018a, Hashemzadeh et al. 2019, Khomenko et al.

2021, Liu et al. 2021, Zhao et al. 2021). Among these air

pollutants, PM2.5 and O3 led to e.g., increased cardiorespi-

ratory deaths, asthma exacerbation, and hospital admissions

for cardiovascular and respiratory diseases (Christakos and

Kolovos 1999; Crouse et al. 2015; Goodman et al. 2015;

Amoatey et al. 2019; Yazdi et al. 2019; Sicard et al. 2020).

The PM2.5 is linked to increases in respiratory problems,

cardiovascular health effects, risk of lung cancer and pre-

mature mortality. Climate change and air pollution are clo-

sely linked (Sicard et al. 2016a, De Marco et al. 2022a, b)

since the source of greenhouse gases and air pollutants are

generally similar (O’Donovan et al. 2018; De Marco et al.

2022b). Ozone is the third most important greenhouse gas in

terms of radiative forcing, contributing to climate change

(Amoatey et al. 2019). Due to the human activities like

industrial processing, transportation and energy consump-

tion, the O3 levels increased in the last decades in cities

(Siciliano et al. 2020; Zoran et al. 2020; De Marco et al.

2022a), and this increase in cities was intensified during the

COVID-19 lockdown (Siciliano et al. 2020; Zoran et al.

2020; Sicard et al. 2020) with negative impacts on human

and ecosystems health (Wang et al. 2020; Shin et al. 2021).

Research on ambient PM2.5 and O3 and their health effects is

conducted in cities such as NewYork (Kheirbek et al. 2013),

Beijing (Xie et al. 2019), Delhi (Amann et al. 2017), Paris

(Bressi et al. 2013), Los Angeles (Hasheminassab et al.

2014), Lisbon (Garrett and Casimiro 2011), Rome (Sicard

et al. 2019), and Catalonia (Rovira et al. 2020). In Iran, some

studies were performed inAhvaz (Karimi et al. 2019), Tabriz

(Barzeghar et al. 2020), Tehran (Faridi et al. 2018), and

Shahrekord (Naghan et al. 2022) to assess the effects of

PM2.5 and O3 on mortality and morbidity among population.

Southwest of Iran (Lorestan Province) has experienced ele-

vated air pollution due to Middle East Dust (MED) storms,

road traffic, and increased industrial operations. In recent

years, Khorramabad has witnessed similar high exposure to

ambient air pollutants such as PM2.5 and O3. The main

objectives of the present study were to investigation the

health effects of PM2.5 and O3 by concentration–response

model, and estimate the years of life lost and loss of life

expectancy in 2019 and 2020 in Khorramabad, southwestern

city of Iran.

2 Materials and methods

2.1 Study area

Khorramabad (33�48’N; 48�35’E), with a population of

about 540,000 people, is located in Lorestan Province,

southwestern of Iran (Fig. 1). The annual mean precipita-

tion and air temperature is 511 mm and 19.2 �C, respec-
tively. Khorramabad is classed under the Köppen climate

classification as a hot-summer Mediterranean climate

(Daryanoosh et al. 2018). In this region, the main causes of

air pollution are the dust storms leading to high concen-

trations of particulate matters (Kianisadr et al., 2018). In

addition, petrochemical industries and road traffic emis-

sions have exacerbated the poorly air quality (Daryanoosh

et al. 2018, Kianisadr et al., 2018). The city is surrounded

by the high Zagros Mountains (1170 m a.s.l) trapping the

ambient air pollutants within the atmospheric boundary

layer leading to higher pollution levels (Daryanoosh et al.

2018).

2.2 Data collection

The hourly PM2.5 and O3 concentrations were obtained,

from 1st January 2018 to 31st December 2021, from two

urban monitoring stations provided by the local Environ-

ment Protection Agency under the Iranian Department of

Environment (https://www.doe.ir). Then, the hourly data

were aggregated to daily averages with at least 75% vali-

dated hourly data or non-missing values using Microsoft

Excel Package (Khaniabadi and Sicard 2021b).

2.3 Data processing

In this study, we detected outliers within time-series by

using Z-scores. The standard cut-off value for finding

outliers are Z-scores of ± 3. The PM2.5/O3 ratio was cal-

culated to fully understand the relationship between PM2.5

and O3. This applied ratio can be used as an indicators of

air pollution over time to describe the underlying atmo-

spheric processes and to provide further understanding of

the spatio-temporal variability of air pollutants. In the risk

assessment, exposure is considered equal to air pollutants

concentrations at a specific point in space and time

(Bogaert et al. 2009; Neisi et al. 2018, Khaniabadi and

Sicard 2021b). The concentration–response (C-R) model

was developed from current systematic reviews and meta-

analysis of various short- and long-term mortality and

morbidity health effects for air pollution exposure. For the

analysis of exposure by air pollutant, the baseline incidence

(BI), relative risk (RR) and the number of people at risk

(N) over an area are needed. The BI is the rate of incidence

of given health effect in an exposed population and the RR

is derived from different published papers and represent the

chance of developing air pollution related diseases as a

result of exposure per each 10 lg m-3 increase in the air

concentration (Sicard et al. 2019). The RR measures the

probability of developing a disease related to exposure

based on Eq. 1.
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RR ¼ exp b � X � X0ð Þ½ � ð1Þ

where b is a parameter which regulates the amount of RR

increasing, X and X0 (lg m-3) also are respectively the

measured air pollutant concentrations and background

where no health effect recorded (De Marco et al. 2018).

For the quantification of mortality related to ischemic

heart disease, chronic obstructive pulmonary disease and

lung cancer, integrated exposure–response functions from

European cohort studies can be used (Eq. 2).

ifz�zcf thenRR zð Þ¼1þa 1�exp �c� z�zcf
� �

�d
� �� �

ifz\zcf thenRR zð Þ¼1

( )

ð2Þ

where z and zcf are respectively the annual mean concen-

tration and the counterfactual PM2.5 concentration

below which we assume no additional risk. Also, parame-

ters a, c and d are pre-integrated (De Marco et al. 2018; Al-

Hemoud et al. 2020; Amoatey et al. 2020; Rovira et al.

2020). Furthermore, the Attributable Proportion (AP %) is

the fraction of a health effect that can be statistically

associated with the exposure to the air pollutant, c, in a

population P(c) (Eq. 3).

AP ¼
X

RRðcÞ � 1� � PðcÞ½ �ð Þ=
X

½RRðcÞ � PðcÞ� ð3Þ

where AP is the attributable proportion of the health effect,

RR(c) is the relative risk for certain health impacts in

category ‘‘c’’ (e.g., residential, or industrial) of exposure

obtained from exposure–response functions derived from

epidemiological studies (Hadei et al. 2017; Rovira et al.

2020). P(c) is number of individuals at risk (Gurjar et al.

2010; Fattore et al. 2011; Daryanoosh et al. 2017; Khani-

abadi et al. 2017a).

For a health effect, the number of cases NCc per 100,000

people at risk attributed to the air pollutant c is calculated

as NCc = BI � AP. The number of excess cases, NEc,

attributed to the air pollutant c is calculated as NEc = 10-5

�[NCc � N], where N is the number of people at risk

exposed to the air pollutant c (De Marco et al. 2018).

SOMO35 (Sum of Ozone Means Over 35 ppb) is a

metric for health impact assessment, based on recent epi-

demiological studies, and recommended by WHO

(Aksoyoglu et al. 2014). SOMO35 (in lg m-3 days) is

defined as the yearly sum of the daily maximum of 8-h

running average for O3 over 35 ppb (i.e., 70 lg m-3) was

calculated (Eq. 4).

Fig.1 The study area of

Khorramabad, Iran
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SOMO35 ¼
X

i

max � 0:ðCi � 70½ Þ� ð4Þ

where Ci is the maximum daily O3 mean concentrations (in

lg m-3), and i number of days in a calendar year. Since

SOMO35 is sensitive to missing daily O3 concentrations, it

is corrected to full annual coverage with actual valid daily

concentration levels (Nvalid) according to below equation

(Eq. 5).

SOMO35 ¼ SOMO35uncorrected � Ntotal=Nvalid ð5Þ

where, Ntotal = total number of days in a calendar year

(365 days in 2019, 366 in 2020), Nvalid = total validated

daily O3 mean concentration.

The long-term effects on mortality due to respiratory

diseases, according to RR functions, is shown in Eq. 6 for

each 10 lg m-3 increase in O3 levels. It is modeled as a

log-linear function.

RR ¼ expfb:SOMO35uncorrected=Nvalidg ð6Þ

Similarly, for mortality due to respiratory diseases from

O3 exposure, the model estimates the integrated exposure–

response (IER) function by Eq. 7.

RR ¼ exp b: Cmax8 � X0f g½ � ð7Þ

where b is the increase rate of RR. Cmax8 (lg m-3) is the

maximum average daily 8-h O3 concentrations and Xo is

daily concentration of O3.

The BI is the rate of incidence of a given health outcome

in the population. As recommended by WHO, to estimate

mortality due to respiratory diseases (M-RD) and all-causes

mortality (M-all-cause) attributable to the long-term

exposure to PM2.5, we used linear-log function, respec-

tively. Besides, to assess the cause-specific mortality in

adults, including ischemic heart disease (M-IHD), chronic

obstructive pulmonary disease (M-COPD) and lung cancer

(M-LC) among adults more than 30-year-old attributable to

PM2.5 exposure, we used the IER function as are described

by (Burnett et al. 2014; Héroux et al. 2015; Faridi et al.

2018). Following the International Statistical Classification

of Diseases and Related Health Problems 10th Revision

(ICD-10), J95 and J96 are associated to respiratory mor-

tality, J120-J189, J209-J499, and J690-J700 and J44 codes

are associated to COPD, C33 and C34 are correspond to

LC, and codes I20 to I25 are related to IHD. Table 1 shows

the year-specific BI amounts used in this study for assess of

health effects attributed PM2.5 and O3 in Khorramabad,

Iran.

2.4 Statistical estimation and years of life lost

Data were analyzed for normal distribution by the Kol-

mogorov–Smirnov one-sample D-test. The correlation

analyses were performed by using the Pearson regression

between air pollutants concentrations from January 2019 to

January 2020. To estimate the years of life lost (YLL), life

table method is used (Hadei et al. 2020) as well as losses of

expected life remaining (ELR) in a population. For this,

rate of population and deaths are required. The loss of life

expectancy using population-weighted was estimated.

3 Results and discussion

3.1 Temporal variability

In 2019 and 2020, the highest PM2.5 (133.6 lg m-3) and

O3 (46.1 lg m-3) mean concentrations were recorded in

2019, while lower levels were observed in 2020 (89.7 and

37.7 lg m-3, respectively). The annual PM2.5 mean con-

centration exceeded the 2021 WHO guideline value for

human health protection (5 lg m-3), while O3 did not

exceeded the daily 8-h annual mean guideline

(100 lg m-3). Figure 2 shows the time series of PM2.5 and

O3 level in 2019 (normal condition before COVID-19) and

2020 (during COVID-19 pandemic) in Khorramabad.

In this study, we observed the higher PM2.5 levels within

cold season due to activities at home such as high com-

bustion emissions, domestic heating, biomass burning

(Amoatey et al. 2020) and dust storms (Amoatey et al.

2021; Goudarzi et al. 2021). In the southwest of Iran, there

is encountered with the high levels of particles from MED

storms with Arabians’ desserts sources (Broomandi et al.

2022) which disperses more during winter season because

of higher wind speed (Khaniabadi et al. 2017c, 2019;

Omidi Khaniabadi et al. 2019). The O3 levels were higher

during warm season due to transportation of air masses,

emissions (Wu and Xie 2017), and photo-chemical reaction

(Guo et al. 2017) Lei et al. 2019).

3.2 Relationship between PM2.5 and O3

The daily PM2.5 concentrations was well correlated to O3

in 2019 (r = -0.46, p\ 0.05) and 2020 (r = -0.55,

p\ 0.05), with PM2.5/O3 amounts about 4.1 and 2.9,

respectively in these two years (Fig. 3). High PM levels

leads to a reduced solar radiation (Li et al. 2017; Zhang

et al. 2022) leading to a decrease of surface O3 formation

(Khaniabadi and Sicard 2021a, Sicard 2021). Furthermore,

the heterogeneous chemical processes occurring on PM2.5

surface with O3 are a way for O3 removal by PM2.5 in the

atmosphere (Amoatey et al. 2019; Sicard et al. 2019).

Higher PM2.5/O3 ratio in 2019 than 2020 showed the

high contribution of traffic road (De Marco et al. 2018),

fossil fuels consumption and dust storms (Naghan et al.

2022) leading to rising PM2.5 concentration in the air,

Stochastic Environmental Research and Risk Assessment

123



reducing solar radiation (Adhikari and Yin 2020). In 2020,

COVID-19 lockdown, with restricted activities, led to a

reduction in PM2.5 concentrations and to higher O3 levels

(Sicard et al. 2020).

3.3 Comparison of mean pollutants and energy
consumption

A comparison between the pre-COVID-19 pandemic and

COVID-19 period for PM2.5 and O3 mean concentrations in

2018, 2019 and 2020 across Khorramabad, was investi-

gated (Fig. 4). The first overview illustrated, restrictive

measures in relation to COVID-19 pandemic led to a

reduction in the annual average of PM2.5 by—25.5%.

Furthermore, the annual averages O3 in 2020 compared to

previous years increased by ? 8.0% during COVID-

19 year.

(Sicard et al. 2020) showed that O3 increased in Wuhan,

Valencia, Nice and Rome higher than previous years

2017–2019, while PM2.5 annual averages was reduced in

these cities during 2020. By considering long-time-series, a

trends analysis in Marseille showed that the restrictive

measures due to COVID-19 led to an actual reduction of

11% in PM2.5 concentrations compared to the time period

2010–2019 (Khaniabadi and Sicard 2021b). Another study

showed that O3 was the only pollutant increased over the

COVID pandemic, and then decreased by 20% post-

COVID with government monitoring (Bhatti et al. 2021).

In Almaty, Kazakhstan (Kerimray et al. 2020), the annual

averages of PM2.5 during 2019 and 2020 were respectively

40 and 31 lg m-3, in which the concentration was reduced

during COVID-19 at 2020 almost-29%.

The yearly comparative of fuel consumption including

gasoline and natural gas pre-pandemic (2018 and 2019)

Table 1 Baseline incidence (BI) and relative risk (RR) values for health outcomes, and people at risk at 95% confidence intervals (95% CI) for

long-term exposure to PM2.5 and O3 concentrations (lag0-1 days) more than 10 lg m-3

Health outcomes BI RR per 10 lg m-3 (95% CI) Ref

PM2.5

Mortality, all-cause (age C 30) 845–1832 1.062 (1.04–1.083) Héroux et al. (2015)

Mortality, IHD (age C 25) 101–177 IER function Burnett et al. (2014)

Mortality, COPD (age C 30) 13–20 IER function Burnett et al. (2014)

Mortality, LC (age C 30) 11–22 IER function Burnett et al. (2014)

O3

Mortality, respiratory diseases (age C 30) 44–53 1.014 (1.005–1.024) Héroux et al. (2015)
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Fig. 2 Time series trends of PM2.5 and O3 levels in 2019 and 2020 in Khorramabad, Iran
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and during-COVID-19 (2020) showed a lowering in the

cost of consumption fuels during the COVID-19. The

variation rate for gasoline (m3 year-1) and natural gas (in

Mm3 year-1) lead to a reduction in cost for people about

-13.06% and -12.56%, respectively in 2020 (Fig. 4).

There was a positive association between PM2.5 concen-

tration and gasoline and natural gas consumption

(p\ 0.05), while a negatively association with O3 con-

centration (p\ 0.05) was performed.

The cost-reduction indicates that the higher air quality

has a positive association with human activity, lower traffic

and the closure of factories which all causes reduce con-

sumption of energy (Tian et al. 2021) and provides a better

air quality (Agami and Dayan 2021) in the different areas

within the world. A comparative study on fuel consumption

in Israel indicated that with extensive COVID-19 in the

world, the consumption of gasoline and natural gas was

reduced -22.5% and -10% respectively than the same

period within 2019. In Turkey, (Güngör et al. 2021)

demonstrates gasoline consumption during COVID-19 was

lower than the same time in 2019.
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Fig.3 (left) Correlation between PM2.5 with O3 levels, and (right) relationship between PM2.5/O3 ratio with PM2.5 during 2019 and 2020 across

Khorramabad, Iran
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3.4 Health impact of PM2.5 and O3 and the years
of life lost

The number of premature deaths for non-accidental causes

for PM2.5 above 10 lg m-3 ranged from 7.3 to 27.5, and

from 6.2 to 24.6 per 105 inhabitants in 2019 and 2020,

respectively (Table 2). The number of M-RD for long-term

exposure to O3 in 2019 and 2020 were estimated at 4.7 and

5.4 per 105 inhabitants, respectively. The main causes of

non-accidental mortality among 105 people due to expo-

sure to PM2.5 was M-COPD for people older than 30-year-

old. The rate of mortality due to exposure to PM2.5

decreased 7.6% per 105 inhabitants, while for O3 an

increase of 14.8% M-RD per 105 inhabitants was found in

2019 and 2020, respectively. The highest and the lowest

annual change in non-accidental deaths for PM2.5 were

observed for M-COPD (? 1.8 deaths per 105 inhabitants)

and M-LC (-2.95 deaths per 105 inhabitants). Also, M-RD

increased (? 0.7 deaths per 105 inhabitants) in 2020 than

2019 due to exposure to different O3 level. The number of

premature deaths in 2020, excluding COVID-19 impact,

for PM2.5 exposure was M-all-cause = 20.4, IHD = 5.4,

COPD = 14.4, LC = 6, and for O3 exposure M-RD = 4.0

per 105 inhabitants at risk.

In Ahvaz with a population of about 1.3 million people,

M-all-cause and M-RD, respectively for PM2.5 and O3

exposure were 240 and 2.72 for adults C 30 year-old

(Karimi et al. 2019). In Tehran (Faridi et al. 2018) showed

the number of premature M-COPD increased by 57% from

2010 to 2015, while M-IHD was reduced by 28%. With a

10 lg m-3 increase in the rate of daily PM2.5 exposure,

1.04% increased mortality for non-accidental causes

worldwide (Atkinson et al. 2014). The MED storms is one

of the most important reasons which caused high levels of

particles in air, and subsequence the increase of mortality

and morbidity in west and southwest of Iran (Khaniabadi

et al. 2017d, Khaniabadi et al. 2018b). In Marseille (South

of France), the number of non-accidental M-all-cause

decreased by 1.15 per 105 people approximately (Khani-

abadi and Sicard 2021a). The surface O3 as a global serious

problem, has considered in various internal projects in

Europe, the United States, and Asia (Sicard et al. 2017).

Another study by (Barzeghar et al. 2020) showed M-RD O3

as SOMO35 increased in Tabriz within 2018 than previous

years. The estimated premature M-RD due to exposure to

atmospheric O3 levels in the at-risk population was 143 in

2019 cases while it was 242 in 2013 in Portugal (Brito et al.

2022).

The highest YLL is 1456 in 2019 and then declined by

11.6% in 2020 (Table 3). Results showed exposure to air

PM2.5 in 2019 and 2020 reduced the life expectancy by

0.58 and 0.45 years during each year, respectively. The

loss of life expectancy due to PM2.5 exposure in Iran was

estimated at 0.43–1.87 years (Hadei et al. 2020). The YLL

attributable to PM2.5 for individuals higher than 30 year-

old was decreased by 30% during 10 years (2006–2015) in

Tehran (Faridi et al. 2018).

4 Conclusion

In this study, we investigated the temporal trends in PM2.5

and O3 concentrations in a southwestern capital city of

Iran. The main source of PM2.5 as most serious health risk

within southwest of Iran is MED storms from Arabian

countries (Karimi et al. 2019; Goudarzi et al. 2021). This

study has conducted with a methodology from high-quality

research, but there are still limitations. The interactions

between air pollutants and their information are not

available, however the health effects are focused on a

Table 2 At-risk population, estimated AP %, and the number of cases due to long-term exposure to PM2.5 and O3 using the 95% CI RR in 2019

and 2020

Health impact At-risk population Estimated AP (%) PM2.5 O3

2019 2020 2019 2020 2019 2020 2019 2020

Mortality, all-cause

(age C 30)

134,500 144,200 3.7 (1.3–5.8) 2.8 (2.0–5.1) 27.5

(4.6–37)

24.6

(21–41.2)

– –

Mortality, IHD

(age C 25)

79,800 81,580 5.6 (0.5–

11.9)

6.1 (0.8–

13.85)

7.3

(6.6–14.9)

6.3(1.2–11.5) – –

Mortality, COPD

(age C 30)

68,440 71,050 2.7 (0.5– 4.9) 1.8 (0.2– 2.8) 17.0

(8.9–23.6)

19.2

(5.8–32.6)

– –

Mortality, LC (age C 30) 54,600 60,750 12.8 (5.9–

21.9)

10.4

(3.5–12.85)

9.2

(8.31–11.2)

6.25

(2.45–9.3)

– –

Mortality, RD (age C 30) 101,560 112,700 13.6 (11.5–

15.8)

11.6 (4.7–

16.5)

– – 4.7

(1.56–8.66)

5.4

(1.8–13.42)
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single pollutant without considering the simultaneous

exposure to the multiple pollutants. This study only reflects

outdoor exposure while people spend longer indoors (Guan

et al. 2021b). A comprehensive estimation of indoor air

pollution health effects by (Hu et al. 2020) showed that the

indoor exposure accounted for 68% and 34% of that to

ambient PM2.5 and O3. Therefore, this study may overes-

timate the health effects to a certain extent. Our approach

assumes that air concentrations measured at the central

monitoring point are representative of the exposure of all

people living in a city (Khaniabadi et al. 2017b; Guan et al.

2021a). In general, the health effect findings based on daily

averaged not suitable for direct comparison (Guan et al.

2021b).

Between 2018 and 2020, PM2.5 mean concentrations

ranged from 27.7 to 41.2 to lg m-3, while O3 levels ranged

from 14.2 to 15.7 lg m-3. Highest PM2.5 and O3 levels

were observed during cold and warm seasons with good

coefficient correlation in 2019 and 2020. The COVID-19

lockdown reduced PM2.5 concentrations (-25%) and

related mortality (-7.5%) but O3 levels increased (? 8%),

as well as the O3-related number of premature deaths

(? 15%). PM2.5 concentrations is well correlated to gaso-

line and natural gas consumption, and negatively correlated

to O3, leading to a reduction in cost for people (-13.1%

and-12.6% respectively in 2020), compared to previous

years. In 2019 the number of premature deaths related to

PM2.5 (7.3 to 27.5 per 105 people) and O3 (4.7 per 105

people) concentrations changed to 6.3 to 24.6 per 105

people and 5.4 per 105 people in 2020. Our results showed

exposure to PM2.5 reduced the life expectancy by 0.58 and

0.45 year in 2019 and 2020, respectively. Previous studies

provided quantitative estimates of the ability of green

infrastructure to ameliorate urban air quality (e.g., PM2.5,

O3) at city scale worldwide (Adhikari and Yin 2020,

Khaniabadi and Sicard 2021a).
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