The Role of Iranian Medicinal Plants of the Asteraceae Family in Pain Therapy: A Systematic Review

Sedigheh Nadri¹, Hormoz Mahmoudvand^{2*}

¹Department of Anesthesiology, Lorestan University of Medical Sciences, Khorramabad, Iran ²Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran

Received: 12.08.2020; Accepted: 26.01.2021

Abstract

Asteraceae or Compositae is considered as one of the main flowering plants around the world which presently have more than 23,600 accepted species from 1,620 genera and 13 subfamilies. The present study aims to systematically review the role of Iranian medicinal plants of the family Asteraceae in pain therapy. We searched several databases, including Scopus, PubMed, Web of Science, EMBASE, Google Scholar, MagIran, and SID without time limitation for publications related to antinociceptive effects of Iranian medicinal herbs of the Ateraceae family. Studies in any language were entered in the search phase if they had an English abstract. Of the 1080 papers obtained from all of the databases up to 2020, 20 articles were reliable and were scrutinized. The most abundant parts of these plants are aerial parts (17 papers, 85%). Based on the obtained results, the most abundant products were hydroalcohol extract (10 papers, 45.5%) and essential oils (8 papers, 40%) of the medicinal herbs of the Asteraceae family. The most frequently tests used were formalin test (77.3%), followed by writhing test (54.5%) and tail-flick test (36.4%). The findings of the present review demonstrated that the Iranian medicinal herbs of the Asteraceae family are generally used to treat and reduce pain. Although herbs in this family may be considered as alternative agents for pain treatment, further studies are required to clear the accurate anti-nociceptive mechanisms as well as toxicity of these plants in human subjects.

Keywords: Antinociceptive, Herbal medicines, Extract, Essential oil, Iran, Asteraceae family

*Corresponding Author: Hormoz Mahmoudvand. Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran. Email: dr.mahmoudvand@gmail.com.

Please cite this article as: Nadri F, Mahmoudvand H. The Role of Iranian Medicinal Plants of the Asteraceae Family in Pain Therapy: A Systematic Review. Herb. Med. J. 2021; 6(1):27-35.

Introduction

Pain is widely known as an unpleasant mental and emotional condition that is along with promising or actual tissue damage followed by harmful heat, stretch, electrical flow, necrosis, surgical interventions, trauma, etc. (1, 2). At present, antinociceptives or analgesics are categorized into two major groups: (i) opioid drugs which act through activating opioid receptors; (ii) non-steroidal antiinflammatory drugs (NSAIDs) which constrain prostaglandin synthesis through the inhibition of the cyclooxygenase enzyme (3-5).

Although these drugs are characterized by high efficacy, there have been some limitations and side effects, including sedation, nausea, vomiting,

respiratory and cardiovascular depression, etc. in recent years (5, 6). Consequently, finding a new agent with considerable efficacy and low toxicity is required; whereas medicinal plants can be important sources (5-8).

In recent centuries, medicinal herbs have been recommended due to having natural effective derivatives for preventing or treating conditions associated with pain (9-12). Asteraceae or Compositae is considered as one of the main flowering plants around the world which presently have more than 23,600 accepted species from 1,620 genera and 13 subfamilies (13). Based on certain reports presented in recent years, a wide range of pharmacological and therapeutic properties such as antioxidant, anti-inflammatory, anticancer, and antimicrobial properties have been attributed to the plants in Asteraceae family (13). Previous studies have demonstrated that the main secondary metabolites produced from plants in the Asteraceae family are flavonoids and terpenoids; whereas these compounds have exhibited various biological activities in modern medicine (14-16). This research aimed to systematically review the role of Iranian medicinal plants of the family Asteraceae in pain therapy.

Methods

Search strategy: To carry out this research, we searched several databases, including Scopus, PubMed, Web of Science, EMBASE, Google Scholar, MagIran, and SID without time limitation for publications worldwide related to antinociceptive effects of all Iranian medicinal herbs in the Asteraceae family in order to identify all relevant published articles. Studies in any language were entered in the search phase if they had an English abstract. The words and terms were used as a syntax with specific tags of each database. The searched words and terms were: "herbal medicine", "medicinal plants", "antinociceptive", "analgesic", "Asteraceae", "extract", "essential oil", "pain", and "Iran" (Fig. 1.).

Selection of Studies: Initially, the papers were imported to the EndNote X9 software (Thomson Reuters, New York, NY, USA) and duplicate studies were deleted. Afterwards, three independent authors examined the titles and abstracts of the studies and then the relevant studies were included for further analysis. The same authors carefully read the studies and the eligible studies with adequate inclusion criteria were selected. The corresponding author resolved any disagreement between the authors.

Exclusion Criteria: Exclusion criteria included insufficient information, having only an abstract, failure to match methods with results, and inaccurate interpretation of results.

Data Extraction: Three independent authors extracted the information from the selected articles and, if needed, the differences were resolved by the corresponding author. The extracted data included nanoparticles, type of nanoparticles, in combination or loaded with other drugs, type of study, and important results.

Results and Discussion

Of the 1080 papers obtained from all of the databases up to 2020, 20 articles were reliable and were scrutinized (Table. 1). The most abundant parts of these plants were aerial parts (17 papers, 85%). Based on the obtained results, the most abundant product was hydroalcohol extract (10 papers, 45.5%) and essential oils (8 papers, 40%) of medicinal herbs of the Asteraceae family. The most tests used were formalin test (77.3%), followed by writhing test (54.5%) and tail-flick test (36.4%).

Today, drugs used to relieve pain are divided into two groups: narcotics (such as opioids) and non-narcotics (such as salicylates and corticosteroids). Although they show high efficacy, the use of these drugs is subject to some limitations due to adverse and serious side effects (5-8).

The history of treatment of diseases with medicinal plants dates back to the history of human life on Earth. The tendency of the society to use herbal medicines and treatments as well as natural products in general has been increasing, particularly in recent years (12, 37). Moreover, the most important causes are the proof of the destructive and side effects of chemical drugs on the one hand and the creation of environmental pollution that threatens the planet on the other hand (10-12). Currently, 25% of the drugs in the world pharmaceutical market are of plant origin. At the same time, according to the World Health Organization,

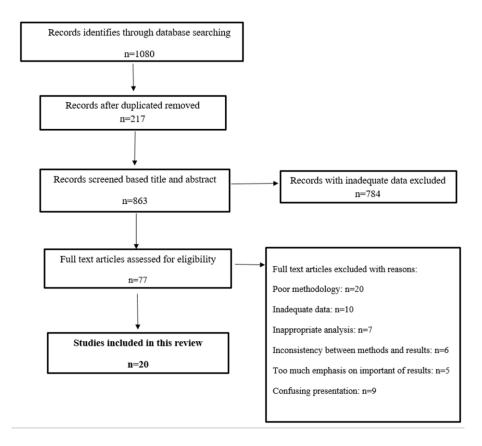


Figure 1. Flowchart for Describing the Study Design Process.

about 80% of the world's population live in developing and poor countries. Due to the high cost of synthetic drugs and their lack of availability and side effects, the main medical needs of these countries are fulfilled from medicinal plants (38, 39). According to the review reports, Asteraceae as one of the biggest family of herbs demonstrated pharmacological and therapeutic properties such as antioxidant, anti-inflammatory, anticancer, and antimicrobial properties that have been attributed to the plants in the Asteraceae family (13). The results of our review showed that from 1080 papers obtained from all of the databases up to 2020, 20 articles were reliable and were scrutinized. The most abundant parts of these plants are aerial parts (17 papers, 85%). Based on the obtained results, the most abundant product was hydroalcohol extract (10 papers, 45.5%) and essential oils (8 papers, 40%) of medicinal herbs of the Asteraceae family. The most tests used were formalin test (77.3%), followed by writhing test (54.5%) and tail-flick test (36.4%). Previous studies have demonstrated that the main secondary metabolites produced from plants in the Asteraceae family are flavonoids and terpenoids; whereas these compounds showed various biological activities such as analgesic or antinociceptive in pain management (13-15).

Flavonoids are considered as one of the main groups of polyphenolic compounds in vegetables and fruits. In general, flavonoids are divided into three classes of compounds, i.e. (i) flavones (flavone, apigenin, and luteolin), (ii) flavonols (quercetin, kaempferol, myricetin, and fisetin), and (iii) flavanones (flavanone, hesperetin, and naringenin) (40). Flavonoids are abundant in plants of the Asteraceae family that have potent analgesic effects (41). Considering the possible antinociceptive mechanisms of flavonoids, previous studies exhibited that these compounds through crossing brain-blood barrier can control pain via various mechanisms such as affecting gamma-amino butyric acid (GABA) A, opioid, a-adrenergic receptors and inhibiting enzymes related to inflammation in the brain. Furthermore, reviews showed that flavonoids, through inhibiting cyclooxygenase in tissues and

subsequently inhibiting prostaglandins (PG) synthesis are able to control pain (41-43).

Plant	Extraction	The	Pain Test Type	Outcome	Ref.
		Used Part			
Artemisia	Ethanolic extract	Aerial	Formalin, hot-plate,	The ethanolic extract (50 and 100 mg/kg)	(17)
dracunculus L.		parts	and writhing tests	reduced both phases of pain in the	
				formalin test. The extract (50 and	
				100 mg/kg) showed antinociceptive	
				activity against acetic acid-induced	
				writhing and hot-plate test.	
Calendula	Hydroethanol extract	Aerial	Hot water tail	The results of the present study indicated	(18)
officinalis L.		parts	immersion and acetic	that aqueous extract demonstrated	
			acid writhing tests	significant differences compared to the	
				control and standard groups in all tests.	
Tanacetum	Hydroalcohol	Aerial	Formalin tests	At the doses of 150 and 300 mg/kg,	(19)
Sonbolii L.	extracts	parts		significant antinociception in phase 2 was	
				produced. Moreover, at the doses of 600,	
				900 and 1200 mg/kg antinociceptive	
				effects were induced in phase 1 and phase	
				2.	
Artemisia	Essential oil	Aerial	Formalin, hot-plate,	At the doses of 100 and 300 mg/kg,	(20)
dracunculus L.		parts	and writhing tests	reduced the pain response was	
				significantly reduced in the first and	
				second phases of the formalin test,	
				respectively. In the hot-plate test, a	
				significant analgesic activity by	
				increasing latency time was observed.	
				Furthermore, (89, 95, 97 and 97%) the	
				nociception produced by acetic acid was	
				significantly inhibited.	
Artemisia	Hydroalcohol	Aerial	Tail flick test	The extract produced antinociceptive	(21)
absinthium L.	extracts	parts		effect (at 4 and 6% W/V) concentration	
				in tail flick model.	

Tanacetum	Essential oil	Aerial	Formalin test	The essential oil doses dependently	(22)
Fisherae L.		parts		reduced licking and flinching numbers	
				and also pain score in the late (15-35	
				min) and recovery phases (35-60 min) of	
				formalin test (p0.05) in the early (0-5	
				min) phase and interphase (5-15 min).	
Achillea	Hydroalcohol	Aerial	Formalin test	The extract encapsulated in liposome	(23
millefolium L.	extracts	parts		reduced the nociceptive behavior induced	
				by the use of formalin.	
Artemisia	Essential oil	Aerial	Acetic acid-induced	The essential oil produced significantly	(24)
absinthium L.		parts	writhing, formalin and	decreased the number of writhing in	
			hot plate tests	acetic acid-induced writhing model and	
				increased the response latency in hot	
				plate test after 30 min. Moreover, the	
				nociceptive response in the formalin test	
				was significantly suppressed in a dose-	
				dependent manner, while the impact on	
				the late phase was more noticeable.	
Artemisia	Essential oil	Fruits	Formalin test	All doses of A. sieberi fruits essential oil	(25)
sieberi L.				induced antinociceptive activity during	
				the second stage of the formalin test.	
				However, the greatest effect belonged to	
				the dose of 0.8 mg/kg.	
Artemisia	Essential oil	Aerial	Acetic acid-induced	The essential oil remarkably reduced the	(26)
aucheri Boiss		parts	writhing, and hot plate	number of acetic acid-induced writhes in	
			tests	mice in comparison with animals that	
				received vehicle only. Moreover, it	
				showed a central analgesic effect as	
				evidenced by a noticeable increase in	
				reaction time in the hot plate method.	
Gundelia	Hydroalcohol	Aerial	Formalin test	At the doses of 0.3, 0.6, 1.2, and 2.4 g/kg,	(27)
tournefortii L.	extracts	parts		the pain sensation in the formalin test was	
				reduced (p <0.001 in both phases).	
Inula helenium	Hydroalcohol	Aerial	Tail-flick, writhing and	At the dose of 300 mg/kg, significant	(28)
L.	extracts	parts	formalin tests	antinociceptive effect (p<0.01) was	

				observed in writhing (28.21 ± 1.34) and tail-flick (5.11 ± 1.34) tests, in comparison with the control group (41.22 ± 4.12) . In the formalin test, pain score was reduced using 100 mg/kg extract from 2.17 ± 0.21 in the control group to 0.53 ± 0.24 , in the	
				chronic phase.	
Artemisia	Essential oil	Aerial	Formalin and tail	At a dose of 50, 75, and 100mg/kg	(29)
persica Boiss		parts	immersion tests	remarkably reduced the duration of paw licking, clopping, and lifting in the first and second phases of formalin	
				test. Furthermore, at the dose of	
				100mg/kg, the pain response time in the	
				tail immersion test was significantly increased.	
Tanacetum	Hydroalcohol	Aerial	Writhing test	At the dose of 40 mg/kg, the pain	(30)
parthenium L.	extracts	parts		response was significantly reduced.	
Tanacetum	Essential oil	Aerial	Formalin, writhing,	It has been shown that the essential oil at	(31)
balsamita L.		parts	and tail-flick tests.	doses of 10-100 mg/ has significant	
				analgesic effects.	
Inula	Essential oil	Flower	Acetic acid-induced	At the dose of 100 mg/kg, antinociceptive	(32)
britannica L.			writhing, tail-	effects were observed in comparison with	
			flick, formalin tests	the control group.	
Lactuca sativa	Methanol/petroleum	Seed	Tail-	The extract demonstrated a time- and	(33)
L.	ether extract		flick, formalin tests	dose-dependent antinociceptive activity	
				in the formalin test. However, we did not	
				observe any analgesic effect in tail-flick	
				test up to the highest dose used (6 g/kg).	
Sonchus asper	Hydroalcoholic	Aerial	Writhing, tail-flick,	At the dose of 300 mg/kg, a significant	(34)
L.	extract	parts	and formalin-, and	analgesic effects in the tail-flick, writhing	
			glutamate-induced paw	and glutamate-induced paw licking tests	
			licking tests.	were observed. Moreover, the dose of	
				100 mg/kg of significantly reduced the	
				pain scores in the tonic phase of the	
				formalin test.	

Erigeron acer	Hydroalcoholic	Aerial	Writhing, tail-flick and	The extract at the dose of 300 mg/kg	(35)
L.	extract	parts	formalin tests	exhibited a remarkable antinociceptive	
				activity in writhing and tail-flick with	
				P<0.01 and the chronic phase of formalin	
				test (P<0.001).	
Matricaria	Hydroalcoholic	Aerial	Formalin and hot plate	At the doses of 5-50 g/kg, an analgesic	(36)
chamomilla L.	extract	parts	tests	effect on chronic pain induced by the	
				secondary phase of the formalin test was	
				observed.	

Terpenes or isoprenoids are the largest group of phytochemicals which are found in a wide range of plants such as herbs of the Asteraceae family. Reviews reported that terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids, etc.) have numerous biological and pharmacological activities such as anti-inflammatory, anticancer, antioxidant, and antimicrobial activities (45, 46). In the case of the possible analgesic mechanisms of terpenoids, several studies have shown that these compound represent the antinociceptive activities through some pathways, e.g. (i) stopping swelling and bleeding, and reducing pain, (ii) inhibiting PGE2, IL-6 production, COX-2 activity, (iii) blockading Na+ channels, (iv) Inhibiting nerve transmission in cortical nerve cells and dorsal root ganglion cells, (v) and reducing membrane currents by inhibitory effect on Na+ channels currents in dorsal root ganglion neurons (46). These factors demonstrated that analgesic and anti-nociceptive properties of medicinal herbs of the Asteraceae family may be attributed to the presence of these phytochemicals in plants.

Conclusion

The findings of the present review demonstrated that Iranian medicinal herbs of the Asteraceae family are generally used to treat and reduce pain. Although the herbs in this family may be considered as alternative agents for pain treatment, further studies are required to clear the accurate anti-nociceptive mechanisms and toxicity of these plants in human subjects.

Acknowledgements

We thank Mr. Ali Moghaddam for assistance with methodology and his comments that greatly improved the manuscript.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

1.Johnson Q, Borsheski R, Reeves-Viets JR. A Review of Management of Acute Pain Mo Med. 2013; 110(1):74–9.

2. Carr DB, Leonidas GC. Acute pain. The Lancet. 1999;353:2051–8.

3.Cohen MJ, Schecter WP. Perioperative pain control: A strategy for management. Surg Clin N Am. 2005:1243–57.

4. Dunckley P, Wise RG, et al. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. Journal of Neuroscience. 2005;25(32):7333–41.

5.Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: A new therapeutic indication. Anesthesiology. 2000;93(3):858–75

6.Ballantine JC, Mao J. (2003). Opioid therapy for chronic pain. N Engl J Med 349:1943–53.

7. Chapman CR, Casey KL, Dubner R, et al. (1985). Pain measurement: An overview. Pain 22:1–31.

8. Foley KM. The treatment of cancer pain. New England Journal of Medicine. 1985;313(2):84-95.

9.Khazir J, Mir BA, Mir SA, et al. Natural products as lead compounds in drug discovery. J Asian Nat Prod Res 2013;15(7):764-88.

10. Wachtel-Galor S, Benzie IFF. Herbal medicine: an introduction to its history, usage, regulation, current trends, and research needs. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects. 2nd edition. CRC Press; Boca Raton (FL);2011.

11. Mishra BB, Tiwari VK. Natural products in drug discovery: clinical evaluations and investigations. Oppor Chall Scope Nat Prod

Med Chem 2011;1:1-61.

12. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013;1(6):3670-95

13. Bessada AMF, Barriera J, Oliviera M. Asteraceae species with most prominent bioactivity and their potential applications: A review. Ind Crops Prod 2015; 76:604-15.

14. Narasimhulu G, Reddy KK, Mohamed J. The genus polygonum (Polygonaceae): an ethnopharmacological and phytochemical perspectives - review. J Pharm Pharm Sci. 2014;6:21-45.

15. Muley B, Khadabadi S, Banarase N. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Trop J Pharm Res. 2009;8:455-465.

16. Golshani S, Karamkhani F, Monsef-Esfehani HR, Abdollahi M. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J pharm pharm Sci. 2004 Apr 20;7(1):76-9.

17. Eidi A, Oryan S, Zaringhalam J, Rad M. Antinociceptive and anti-inflammatory effects of the aerial parts of Artemisia dracunculus in mice. Pharmaceutical biology. 2016 Mar 3;54(3):549-54.

18. Farahpour MR. Antioxidant activity, Antinociceptive and anti-inflammatory effects of Pot marigold hydroalcoholic extract on experimental animals. Inter. J. Pharm. Tech. Res. 2014;1:974-4304.

19. Sofiabadi M, Azhdari-Zarmehri H, Naderi F, Ghalandari-Shamami M, Sonboli A, Haghparast A. Effects of hydroalcoholic extract of tanacetum sonbolii (Asteraceae) on pain-related behaviors during formalin test in mice. Basic and Clinical Neuroscience. 2014;5(2):162.

20. Maham M, Moslemzadeh H, Jalilzadeh-Amin G. Antinociceptive effect of the essential oil of tarragon (Artemisia dracunculus). Pharmaceutical biology. 2014 Feb 1;52(2):208-12.

21. Zeraati F, Esna-Ashari F, Araghchian M, Emam AH, Rad MV, Seif S, Razaghi K. Evaluation of topical antinociceptive effect of Artemisia absinthium extract in mice and possible mechanisms. African Journal of Pharmacy and Pharmacology. 2014 May 22;8(19):492-6.

22. Fathi M, Hosseinmardi N, Rohampour K, Janahmadi M, Sonboli A, Zaringhalam J. Anti-nociceptive effect of Tanacetum Fisherae on formalin-induced inflammatory pain in rats. Physiology and Pharmacology. 2016;20(3):189-96.

23. Hassanzadeh-Kiabi F, Negahdari B. Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat. Artificial cells, nanomedicine, and biotechnology. 2018;46(5):994-1000.

24. Hadi A, Hossein N, Shirin P, Najmeh N, Abolfazl M. Antiinflammatory and analgesic activities of Artemisia absinthium and chemical composition of its essential oil. Int J Pharm Sci Rev Res. 2014;38:237-44.

25. Darabian A, Mosavi Z, Asgarpanah J, Bakhtiarian A. In vivo analgesic and anti-inflammatory effects of the essential oil from Artemisia sieberi fruit. Research Journal of Pharmacognosy. 2017;4(4):7-15.

26. Tadayoni Z, Shafaroodi H, Asgarpanah J. Analgesic and Anti-inflammatory activities of the essential oil from Artemisia aucheri boiss. Journal of Essential Oil Bearing Plants. 2018;21(2):440-8.

27. Oryan S, Nasri S, Amin G, Kazemi-Mohammady SM. Anti nociceptive and anti-inflammatory effects of aerial parts of Gundelia tournefortii L. on NMRI male mice. Journal of Shahrekord Uuniversity of Medical Sciences. 2011;12.

28. Fallahzadeh AR, Mohammadi S. An investigation of the

antinociceptive and anti-inflammatory effects of hydroalcoholic extract of Inula helenium on male rats. Journal of Babol University of Medical Sciences. 2016;18(12):57-63.

29. Ebrahimi T, Setorki M, Dastanpour N. Antinociceptive effects of Artemisia persica boiss essential oil in male mice using formalin and tail immersion tests. Qom University of Medical Sciences Journal. 2019;12(11):23-31.

30. Asgari A, Parvin N. The analgesic effect of ethanolic extract of Tanacetum parthenium in acetic acid model. Zahedan J Res Med Sci. 2013;15(8):22-5.

31. Kazemzadeh M, Yaghmaei P, Mohammadi S. Analgesic and Anti-inflammatory Effects of Tanacetum balsamita Essential Oil and One of Its Major Constituents (Quercetin) in Male Rats. Clinical Neurology and Neuroscience. 2017;1(3):60-6.

32. Zarei M, Mohammadi S, Komaki A. Antinociceptive activity of Inula britannica L. and patuletin: In vivo and possible mechanisms studies. Journal of ethnopharmacology. 2018;219:351-8.

33. Sayyah M, Hadidi N, Kamalinejad M. Analgesic and antiinflammatory activity of Lactuca sativa seed extract in rats. J Ethnopharmacol. 2004;92(2-3):325-9.

34. Zarei M, Mohammadi S, Shahidi S, Fallahzadeh AR (2017) Effects of Sonchus asper and apigenin-7-glucoside on nociceptive behaviours in mice. J Pharm Pharmacogn Res;5(4):217-27.

35. Golshani Y, Mohammadi S. Antinociceptive and Acute Toxicity Effects of Erigeron acer L. In Adult Male Rats. J. Med. Plants. 2017;16(62):85-93.

36. Vahidi A, Dashti MH, Jamaladdini SH. Antinociceptive effect of chamomill on formalin induced pain in rat. Sci J Shahid Sadoughi Univ Med Sci Health Ser. 2001;9(2):60-5.

37. Stockwell C. Nature's pharmacy: a history of plants and healing. Random House, London, UK, 1988.

38. World Health Organization. WHO traditional medicine strategy 2014–2023. WHO, Geneva, Switzerland, 2013.

39. World Health Organization. The use of herbal medicine in primary health care. In: Report of the Regional Meeting. 10–12 March 2009, Yangon, Myanmar. WHO, New Delhi. 2009. World Health Organization. In: Adherence to long term therapies: evidence for action. WHO, Geneva, Switzerland, 2003.

40. Karak P. Biological activities of flavonoids: an overview. Int J Pharm Sci & Res. 2019 10(4): 1567-74.

41. Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, et al. Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules. 2020;25(3):762.

42. Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants. 2019;8:35. doi: 10.3390/antiox8020035.

43. Verri WA, Vicentini FT, Baracat MM, Georgetti SR, Cardoso D, Cunha TM, et al. Flavonoids as Anti-Inflammatory and Analgesic Drugs: Mechanisms of Action and Perspectives in the Development of Pharmaceutical Forms. In: Rahman A.U., editor. Studies in Natural Products Chemistry. 1st ed. Volume 36. Elsevier; Amsterdam, The Netherlands: 2012. pp. 297–330.

44. Paduch R, Trytek M, Król SK, Kud J, Frant M, Kandefer-Szerszeń M, et al. Biological activity of terpene compounds produced by biotechnological methods. Pharmaceutical Biology. 2016 Jun 2;54(6):1096-107.

45. Martin-Smith M, Khatoon T. Biological activity of the terpenoids and their derivatives. InProgress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques 1963 (pp. 279-346). Birkhäuser Basel. 46. Guimarães AG, Serafini MR, Quintans-Júnior LJ. Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert opinion on therapeutic patents. 2014;24(3):243-65.

© Sedigheh Nadri, Hormoz Mahmoudvand Originally published in the Herbal Medicines Journal (<u>http://www.hmj.lums.ac.ir</u>), <u>03.02.2021</u>. This article is an open access article under the terms of Creative Commons Attribution License, (<u>https://creativecommons.org/licenses/by/4.0/</u>), the license permits unlimited use, distribution, and reproduction in any medium, provided the original work is properly cited in the Herbal Medicines Journal. The complete bibliographic information, a link to the original publication on http://www.hmj.lums.ac.ir/, as well as this copyright and license information must be included