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 ABSTRACT 
 

Background and Aim: SARS-CoV-2 is the causative agent of Coronavirus 2019 or COVID-19 in the world. Novel coronavirus 
disease is a respiratory disease. To date, there have been challenges in the treatment for COVID-19 and emerged new 
variants like UK B1.1.7. Accordingly, an effective prevention regime is needed for this infection, which covers most variants. 
The purpose of this research was to predict the conserved epitopes of Spike and Nucleocapsid proteins from SARS-CoV-2 
for the design of a novel coronavirus 2019 multi-epitope vaccine using in silico tools. 

Materials and Methods: Computational analysis and immunoinformatics approaches include identification of potential 
conserve epitopes and selection of epitopes based on allergenicity, toxicity, antigenicity, and molecular docking were used 
for epitope prediction and screening. In the next step, selected segments of the epitopes were attached by the suitable 
linkers. Finally, Maltese-bound protein (MBP) as an adjuvant was added to the novel vaccine structure. The secondary and 
third structures of the designed multi-epitope vaccine were predicted via immunoinformatics algorithms. Predicted 
structure refined and validated for attaining best stability. In the end, immunoinformatics evaluation, molecular docking, 
and molecular dynamics were performed to confirm vaccine efficiency. Codon optimization and in silico cloning were done 
to ensure the expression yield of the novel multi-epitope vaccine in the target host. 

Results:  This study showed that our data support the suggestion that the designed vaccine could induce immune responses 
against SARS-CoV-2 variants. 

Conclusion:  The structure designed had acceptable quality with software reviews. Further in vitro and in vivo experiments 
are needed to confirm the safety and immunogenicity of the candidate vaccine. 
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1. Introduction
Coronaviridae is a family of viruses consist of seven 

members that have a single-stranded RNA with 
positive-sense, enveloped, and possess genome size 
of 17 to 91 kb (1). Four viruses from this family cause 
the common cold, and two of them lead to the  deadly 
respiratory disease of severe acute respiratory 
syndrome (SARS) and middle east respiratory 

syndrome (MERS). The newly discovered seventh 
member of this family causes COVID-19 disease (2). 

Based on genotyping and serology, coronaviruses 
are divided into alpha, beta, gamma and delta genus 
that alpha and beta genus caused  health problems in 
human (3). In late 2019, a new beta coronavirus was 
isolated from people exposed to a seafood market in 
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Wuhan, China, and named SARS-CoV-2 (4). Symptoms 
such as fever or chills, cough, shortness of breath or 
difficulty breathing, fatigue, muscle or body aches, 
headache, the new loss of taste or smell, sore throat, 
congestion or runny nose, nausea or vomiting, 
digestive problems, diarrhea, kidney failure among 
the main symptoms of COVID-19 (5-8).  

SARS-CoV-2 spread globally, and the World Health 
Organization (WHO) and the Public Health Emergency 
of International Concern (PHEIC) declared a pandemic 
(9). After pandemic waves from Wuhan strain, a 
rapidly spreading variant emerged in the UK. This 
variant is derived from the SARS-CoV-2 20B/GR clade 
(lineage B.1.1.7). It contains multiple mutations, 
including a combination of the N501Y and the 69–
70del in Spike gene. These mutations caused 
increased transmissibility of the virus up to 71% over 
and above the previous circulating strains (10). 
Although a number of vaccines have been introduced 
to the community, it remains necessary to design a 
vaccine using conserve viral antigens, which cover 
current circulating variants. 

SARS-CoV-2 possesses 14 open reading frames in its 
genome, including four structural proteins: the Spike 
protein (S), the Envelope protein (E), the membrane 
protein (M), and the Nucleocapsid protein (N) (11, 12). 
Among these structural proteins, Spike proteins that 
reside on the virus surface are typically selected as 
antigens to produce antibodies from B-cells to 
neutralize the virus. Spike protein contains the 
receptor-binding domain (RBD) responsible for 
binding the ACE2 (angiotensin-converting enzyme 2) 
and entry into the cell. Therefore, the conserved 
sequence of S protein is a major target antigen for 
vaccine development (13-17).  

Nucleocapsid protein (N) plays an important role in 
the viral cell cycle and contributes to forming helical 
ribonucleoproteins during the RNA genome 
packaging, regulate viral RNA synthesis during 
replication, transcription, and modulating metabolism 
in infected individuals. On the other hand, N gene is 
more conserved and stable. It is proved that high-level 
IgG against this protein secreted in sera of SARS 
patients, and the N protein is a representative antigen 
for the T-cell response in a vaccine setting (18, 19). The 
immune system, by its nature, can make its own 
adjustments to recognize vaccines and pathogens. 
Low immunogenicity is one of the drawbacks of 
vaccines. One approach to overcome this problem is 
to use the proper adjuvant (20). 

Today, SARS-COV-2 mutations are one of the 
challenges in human populations immunization, so 
designing a vaccine that can target the conserved 
sequence of the virus is a new approach in this study. 
In the current study, with the aim of in silico 

immunoinformatic, a novel and common epitope of S 
and N proteins from COVID-19 significant variants 
predicted for designing multi-epitope vaccine against 
this global health problem. 

 

2. Materials and Methods 
2.1. Retrieval of protein sequences and alignment 

The FASTA format of surface glycoprotein (RefSeq: 
YP_009724390.1) and Nucleocapsid phosphoprotein 
(RefSeq: YP_009724397.2) of SARS-CoV-2 Wuhan 
strain were obtained from the National Center of 
Biotechnology Information NCBI at:  
https://www.ncbi.nlm.nih.gov/protein/?term=SARS-
CoV-2 (21).  

Multiple sequence alignment was performed 
through CLUSTALW at:  
https://www.genome.jp/tools-bin/clustalw  

2.2. B-cell epitope (linear) prediction 
The Immune Epitope Database (IEDB) server at: 

http://tools.iedb.org/bcell/ includes data about 
immune epitopes for immune response system 
purposes. Bepipred linear epitope prediction server at 
http://www.cbs.dtu.dk/services/BepiPred/ was 
applied for predicting linear B cell epitopes based on 
target antigens-specific sequence features using 
amino acid and HMM scales (22, 23).  

2.3. Prediction of HLA class I and II epitopes 
RANKEPEP server at:  

http://imed.med.ucm.es/Tools/rankpep.html using 
Position Specific Scoring Matrices (PSSMs), Class I and 
Class II MHC molecules predicts the sequence of target 
antigens (24). 

2.4. Allergenicity, toxicity and antigenicity 
prediction of the selected epitopes 

The AllerTOP server at: https://www.ddg-
pharmfac.net/AllerTOP/  is a bioinformatics tool for 
predicting allergens. This server is the first server 
alignment-free that can predict whether or not target 
antigens are allergenic (25). 

Server ToxinPred at:  
http://crdd.osdd.net/raghava/toxinpred/ is one of the 
best bioinformatics tools for predicting the toxicity of 
target antigens. The server for the detection from 
toxic epitopes of machine-learning technique support 
vector machine (SVM) is used (26). 

Server VaxiJen at:   
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html 
is an in silico tool for predicting the antigenicity of 
target peptides. This server is the first server 
alignment-independent that can predict whether or 
not target peptides are protective antigens (27). 

https://www.ncbi.nlm.nih.gov/protein/?term=SARS-CoV-2
https://www.ncbi.nlm.nih.gov/protein/?term=SARS-CoV-2
https://www.genome.jp/tools-bin/clustalw
http://tools.iedb.org/bcell/
http://www.cbs.dtu.dk/services/BepiPred/
http://imed.med.ucm.es/Tools/rankpep.html
https://www.ddg-pharmfac.net/AllerTOP/
https://www.ddg-pharmfac.net/AllerTOP/
http://crdd.osdd.net/raghava/toxinpred/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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2.5. Generation of the 3D structures of the 
selected epitopes 

The PEP-FOLD 3 server at: https://bioserv.rpbs.univ-
paris-diderot.fr/services/PEP-FOLD3/  is based on the 
structural description of peptides. In a short time, this 
server returns useful data in five top models. 

2.6. Molecular docking and refinement of the 
selected epitopes 

PatchDock web servers at:  
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php are 
applied for molecular docking. This server is applied 
carry out structure prediction of protein–small and 
protein–protein molecule collections (28). 
Investigation of molecular docking of peptides using 
this server against alleles HLA DRB1*04-01 (PDB ID: 
5JLZ) and HLA-A*11-01 allele (PDB ID: 5WJL) was 
done. PatchDock server algorithm is based on shape 
complementarity principles. This server uses the root 
mean square deviation (RMSD) score for candidate 
solutions. Top score solutions are considered the best 
solutions by the PatchDock server. In order to check 
the refinement and re-scoring of the docking results 
were carried out, we used FireDock server at:  
http://bioinfo3d.cs.tau.ac.il/FireDock/php.php  

The server generates global energy for the best 
solutions and produces them based on global energy, 
and the lowest global energy is always considered the 
best docking score (29). 

2.7. Construction of final vaccine construct 
The potential epitopes of the two target antigens 

were selected and used in the final construction 
structure. After selecting the final epitopes, it is time 
to merge the epitopes into each other through the 
appropriate linkers GSGSGS, EAAAK and AAYKK. In this 
study, Maltese-bound protein (MBP) was used as 
adjuvants for the designed vaccine. This sequence is 
recognized by Toll Like Receptors (especially TLR2 and 
TLR4) and stimulates cellular and humoral immunity 
(30). 

2.8. Evaluation of Antigenicity and allergenicity of 
recombinant vaccine 

The antigenicity of the recombinant construction 
was specified using the ANTIGENpro server at:  
http://scratch.proteomics.ics.uci.edu/.  

The allergenicity of the recombinant construction 
was determined using AllergenFP v1.0 server at:  
http://ddg-pharmfac.net/AllergenFP/. 

2.9. Analysis of physicochemical properties of 
recombinant vaccines 

In current study, ProtParam server at:  
https://web.expasy.org/protparam/ was used for 
calculating physicochemical properties of the novel 
vaccine, including molecular weight, theoretical pI 
(isoelectric point, EI (extinction coefficient), R and +R 

(total number of positive and negative residues), 
instability index II, GRAVY (grand average hydropathy) 
and AI (aliphatic index) (31). 

2.10. Analysis of the secondary and tertiary 
structure of the recombinant vaccine 

To predict the secondary structure, the GOR4 server at: 

https://npsa-prabi.ibcp.fr/cgi-
bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html  
was used. This server predicts the data theory of the 
second structure of the novel vaccine. 

The three-dimensional structure of recombinant 
construct was predicted by Phyre2 web server at: 
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id
=index. Phyre2 server provides a useful tool to analyze 
and predict protein structure and function. This server 
is one of the best protein online prediction servers and 
works based on the hidden Markov model (HMM) 
(32). YASARA software was used for predicted models’ 
visualization.  

2.11. Refinement and validation of the third 
structure of the recombinant vaccine 

In order to check the refinement of modeled 3D 
structure, we used GalaxyRefine at:  
http://galaxy.seoklab.org/cgi-
bin/submit.cgi?type=REFINE. In the refined model, 
two servers, including RAMPAGE and ProsA, were 
used for validation. 

 RAMPAGE server at:  
http://mordred.bioc.cam.ac.uk/~rapper/rampage.ph
p calculate phi–psi torsion angles for each amino acid 
in the vaccine construct (33).  

ProSA-web server at:  
https://prosa.services.came.sbg.ac.at/prosa.php 
applied for structure validation and calculated an 
overall quality score (34). 

2.12. Molecular docking study 
Docking experiments were performed by the Z-Dock 

server (http://zdock.umassmed.edu/). This server 
carries out the prediction of interactive protein-
protein docking (35). The Cluspro server 
(https://cluspro.bu.edu/login.php) was used to 
evaluate the interaction between the recombinant 
vaccine and TLR4 / MD-2. On this server, vaccine 
protein was selected as ligand, and TLR4 / MD2 was 
introduced as a receptor for molecular docking (36). 

2.14. Molecular Dynamics Simulation 
We used the iMODS server at:  

http://imods.chaconlab.org/  to check the stability of 
the protein complex. This server is a useful tool for 
molecular dynamics study. This server was used to 
explain the motion of a collective protein in internal 
coordinates through normal mode analysis (NMA). 
The server estimated the direction and extent of the 

https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
http://bioinfo3d.cs.tau.ac.il/FireDock/php.php
http://scratch.proteomics.ics.uci.edu/
http://ddg-pharmfac.net/AllergenFP/
https://web.expasy.org/protparam/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://mordred.bioc.cam.ac.uk/%7Erapper/rampage.php
http://mordred.bioc.cam.ac.uk/%7Erapper/rampage.php
https://prosa.services.came.sbg.ac.at/prosa.php
http://zdock.umassmed.edu/
https://cluspro.bu.edu/login.php
http://imods.chaconlab.org/
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immanent motions of the complex in terms of 
deformability, eigenvalues, B-factors, and covariance 
(37). 

2.14. Codon adaptation and in silico cloning 
SMS server at:  

https://www.bioinformatics.org/sms/rev_comp.html  
was used for reverse translation of the designed 
construct to the nucleotide sequence.  In the next 
step, the Java Codon Adaptation tool 
(http://www.jcat.de/) was used for codon 
optimization to clone designed vaccine in Escherichia 
coli K12 strain expression host. Restriction sites BamHI 
and HindIII were introduced at the N and C-terminal 
sites of the final construct for cloning in the pET 26+ 
expression vector.  

 

3. Results 
All steps taken to design a recombinant vaccine are 

shown in Figure 1. 

3.1. B-cell binding epitopes 
Surface glycoprotein and nucleocapsid 

phosphoprotein sequences were used for B-cell 
binding epitopes prediction by Immune Epitope 
Database (IEDB) server (Table 1).  

Table 1. B-cell peptide candidates 

ANTIGENS POS SEQUENCE SCORE 

Spike protein 

251 PGDSSSG 1.484 
807 PDPSKPS 1.413 
252 GDSSSGW 1.404 
476 GSTPCNG 1.397 

Nucleocapsid 
protein 

2 SDNGPQN 1.439 
18 GGPSDST 1.417 
75 NTNSSPD 1.417 
196 NSTPGSS 1.413 

 

3.2. T-cell binding epitopes 
Surface glycoprotein and nucleocapsid 

phosphoprotein sequences were used for MHC I and 
MHC II binding epitopes prediction by the RANKEPEP 
server (Tables 2, 3). 

 
 

 

Tables 2. MHC-I peptide candidates 

ANTIGENS POS SEQUENCE SCORE 

Spike protein 

154 ESEFRVYSS 19.406 
196 NIDGYFKIY 16.09 
661 ECDIPIGAG 13.93 
576 VRDPQTLEI 13.088 

1180 QKEIDRLNE 12.734 

Nucleocapsid 
protein 

295 GTDYKHWPQ 15.609 
103 DLSPRWYFY 13.047 
397 AADLDDFSK 11.648 
272 QAFGRRGPE 7.955 

 

 

Figure 1. Schematic procedure chart for designing the 
recombinant vaccine. The procedure used for designing the 
recombinant vaccine has briefly been shown. 

https://www.bioinformatics.org/sms/rev_comp.html
http://www.jcat.de/
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Table 3. MHC-II peptide candidates 

ANTIGENS POS SEQUENCE SCORE 

Spike protein 

144 YYHKNNKSW 19.71 
199 GYFKIYSKH 17.658 

1208 QYIKWPWYI 17.142 
832 GFIKQYGDC 16.276 
169 EYVSQPFLM 15.561 
955 NAQALNTLV 15.311 
896 FAMQMAYRF 13.314 
365 YSVLYNSAS 12.812 

Nucleocapsid 
protein 

86 YYRRATRRI 27.321 
85 GYYRRATRR 20.179 

385 RQKKQQTVT 12.064 
387 KKQQTVTLL 11.317 
237 KGQQQQGQT 10.056 

 

3.3. Allergenicity, toxicity and antigenicity determination 
T-cell and B-cell epitopes that were selected by 

RANKEPEP and IEDB servers have been evaluated for 
allergenicity, toxicity, and antigenicity by mentioned 
servers in the material and method section (Tables 4). 
In the next step, ESEFRVYSS, VRDPQTLEI, DLSPRWYFY 

and QAFGRRGPPE epitopes were selected from MHC 
Class I, and EYVSQPFLM, FAMQMAYRF and 
RQKKQQTVT epitopes were selected from MHC Class II 
and PGDSSSG, GDSSSGW and GSTPCNG epitopes were 
selected from B-cell.  

 

Table 4. Allergenicity, antigenicity, and toxicity analysis of the selected T-cell and B-cell epitopes of Spike protein and Nucleocapsid protein. 

ANTIGENS EPITOPES ANTIGENCITY ALLERGENCITY TOXICITY 

Spike protein 

PGDSSSG ANTIGEN NON-ALLERGEN NON-TOXIN 
PDPSKPS NON-ANTIGEN NON-ALLERGEN NON-TOXIN 

GDSSSGW ANTIGEN NON-ALLERGEN NON-TOXIN 
GSTPCNG ANTIGEN NON-ALLERGEN NON-TOXIN 

ESEFRVYSS ANTIGEN NON-ALLERGEN NON-TOXIN 
NIDGYFKIY NON-ANTIGEN ALLERGEN NON-TOXIN 
ECDIPIGAG ANTIGEN ALLERGEN NON-TOXIN 
VRDPQTLEI ANTIGEN NON-ALLERGEN NON-TOXIN 
QKEIDRLNE NON-ANTIGEN NON-ALLERGEN NON-TOXIN 

YYHKNNKSW NON-ANTIGEN NON-ALLERGEN NON-TOXIN 
GYFKIYSKH NON-ANTIGEN ALLERGEN NON-TOXIN 

QYIKWPWYI ANTIGEN ALLERGEN NON-TOXIN 
GFIKQYGDC NON-ANTIGEN ALLERGEN NON-TOXIN 
EYVSQPFLM ANTIGEN NON-ALLERGEN NON-TOXIN 
NAQALNTLV ANTIGEN ALLERGEN NON-TOXIN 

FAMQMAYRF ANTIGEN NON-ALLERGEN NON-TOXIN 
YSVLYNSAS NON-ANTIGEN ALLERGEN NON-TOXIN 

Nucleocapsid 
protein 

SDNGPQN ANTIGEN NON-ALLERGEN NON-TOXIN 
GGPSDST ANTIGEN NON-ALLERGEN NON-TOXIN 
NTNSSPD ANTIGEN NON-ALLERGEN NON-TOXIN 
NSTPGSS ANTIGEN NON-ALLERGEN NON-TOXIN 

GTDYKHWPQ NON-ANTIGEN ALLERGEN NON-TOXIN 
DLSPRWYFY ANTIGEN NON-ALLERGEN NON-TOXIN 
AADLDDFSK NON-ANTIGEN NON-ALLERGEN NON-TOXIN 
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ANTIGENS EPITOPES ANTIGENCITY ALLERGENCITY TOXICITY 

QAFGRRGPE ANTIGEN NON-ALLERGEN NON-TOXIN 
YYRRATRRI NON-ANTIGEN NON-ALLERGEN NON-TOXIN 
GYYRRATRR NON-ANTIGEN NON-ALLERGEN NON-TOXIN 
RQKKQQTVT ANTIGEN NON-ALLERGEN NON-TOXIN 
KKQQTVTLL NON-ANTIGEN NON-ALLERGEN NON-TOXIN 

KGQQQQGQT ANTIGEN ALLERGEN NON-TOXIN 
 

3.4. Generation of three-dimensional structures of epitopes and molecular docking 
In this study, molecular docking was used to 

determine whether the final epitopes were able to 
bind to MHC class I and class II.  For docking study, 
selected MHC class 1 and 2 epitopes were introduced 
to the server as ligand, and the HLA-A*11-01 allele 
(PDB ID: 5WJL) and HLA DRB1*04-01 (PDB ID: 5JLZ) 
were presented as the receptor. Amongst MHC-I and 

MHC-II epitopes from surface glycoprotein, 
ESEFRVYSS and EYVSQPFLM demonstrate the 
outcome with the lowest and best global energy score. 
Amongst MHC-I and MHC-II epitopes of nucleocapsid 
phosphoprotein, DLSPRWYFY and RQKKQQTVT 
demonstrate the best outcome with the lowest and 
highest global energy score (Table 5). 

 

Table 5. Results of molecular docking for T-cell epitope against two HLA types 

Name of the protein Epitope MHC allele Global energy Hydrogen bond energy 

Spike protein 

ESEFRVYSS HLA-A*11-01 -29.75 -2.56 
VRDPQTLEI HLA-A*11-01 -22.86 -2.18 
EYVSQPFLM HLA DRB1*04-01 -18.27 -4.95 

FAMQMAYRF HLA DRB1*04-01 -7.96 -2.12 

Nucleocapsid 
protein 

DLSPRWYFY HLA-A*11-01 -48.03 -2.83 
QAFGRRGPE HLA-A*11-01 -9.09 -1.31 
RQKKQQTVT HLA DRB1*04-01 -16.99 -1.31 

 

3.5. Epitope selection and construction of the multi-epitope peptide vaccine 
Based on high-ranking T-cell and B-cell epitopes, 

fourteen epitopes from two antigens were selected as 
the final regions. The final epitopes of each antigen 
were fused together by GSGSGS and AAYKK linkers. 
Maltose / maltodextrin-binding protein was also 

added as an adjuvant to the N-terminal of the novel 
vaccine with Linker EAAAK. The designed novel 
vaccine construct consisted of 590 amino acid 
residues, as illustrated in Figure 2. 

 

a) 

 

b) 

 

 

 

 

 

Figure 2. a) Graphical illustration of the multi-epitope vaccine construct. b) The sequence comprises 590 amino acid sequences. 
The vaccine contains an MBP adjuvant at the N-terminal of vaccine construct 



598   Recombinant Vaccine for COVID-19 Variants 

Year 15, Issue 5 (September & October 2021)                      Iranian Journal of Medical Microbiology 

3.6. Evaluation of antigenicity and allergenicity of recombinant vaccine construct 
The results of the AllergenFP 1.0 server showed that 

the designed structure was not an allergen. The 
possibility of the designed recombinant construct 

antigenicity was predicted 0.909 by the ANTIGENpro 
server, which means that our novel vaccine can 
stimulate impressive immune system responses. 

3.7. Analysis of physicochemical properties of recombinant vaccines construct 
The physicochemical parameters of the recombinant 

construct include GRAVY, theoretical pI, half-life, 
instability index, aliphatic index, amino acid composition, 
and molecular weight are shown in Table 6. 

 

Table 6. Prediction results of recombinant vaccine physicochemical parameters 

Physicochemical properties Result 
GRAVY -0.453 
theoretical pI 5.50 

half-life 
The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 
                            >20 hours (yeast, in vivo). 
                            >10 hours (Escherichia coli, in vivo). 

instability index 26.44 
aliphatic index 63.27 
Total number of negatively charged residues 64 
Total number of positively charged residues 58 
molecular weight 61854.64 

 

3.8. Secondary and tertiary structure analysis 
GOR IV server predictions show that our recombinant 
vaccine was composed of 33.90% alpha helix (H), 15.08% 
extended strand, and 51.02% random coil (C) secondary 
structural elements. Also, the three-dimensional model of 
our novel vaccine is produced by the phyre2 server and is 

shown in Figure 3. The Phyre2 web server showed three 
main domains in the third structure of the designed vaccine. 
This server indicated that 369 residues (63% of vaccine 
sequence) had been modeled with 100.0% confidence by 
the single highest scoring template. 

 

Figure 3. The predicted 3D structures of the recombinant vaccine generated by the Pyre2 server. 3D structure of protein vaccine 
structures generated by YASARA software. 

 

3.9. Tertiary structure refinement and validation 
The selected model was refined using GalaxyRefine. 

This server introduced five refined three-dimensional 
models. The first model with the highest score was 
selected and displayed in Figure 4.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tertiary-structure
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The refined novel vaccine structures were validated 
with the aid of the ProSA-web and RAMPAGE servers. 
The ramachandran plot server showed that the 
recombinant vaccine had 99.2% number of residues in 
the favour region and 0.8% number of residues in the 

allowed region (Figure 5a). ProSA-web servers were 
used for the evaluation of potential and quality errors 
in the 3D crude model. This server is utilized for the 
prediction of Z-score prediction, which is found as 
−11.91 (Figure 5b). 

 

 

Figure 5. a) Ramachandran plot generated by RAMPAGE server. Ramachandran diagram showed that the recombinant vaccine 
had 99.2% number of residues in the favored region and 0.8% number of residues in the allowed region. b) ProSA-web server 
was used for the evaluation of potential and quality errors in 3D crude model. The Z-score of the constructed model calculated 
−11.91, which is in the range of native protein conformation scores.  

 

3.10. Molecular docking of subunit vaccine with TLR-4 
A novel multi epitopes vaccine was docked with 

TLR4 using the Z-DOCK server. In general, ten 
complexes have been developed, and the most 
appropriate set of TLR vaccines has been selected 
based on the correct combination and binding (Figure 
6a). The Cluspro server was also used to evaluate the 
interaction between the recombinant vaccine and 

TLR4 / MD-2. The top 10 models were selected based 
on the biophysical characteristics of the receptor and 
ligand, which in terms of the docking pattern between 
the receptor and the ligand, the first introduced model 
possess the lowest weight score (-915.9 kcal / mol) 
(Figure 6b). 

A B 

Figure 4. Final vaccine construct after refinement via GalaxyRefine 
server. The server genertaed five refined three-dimensional models. 
The first model with the highest score was selected and visulized by 
YASARA software. 
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Figure 6. Docking studies of designed multi-epitope vaccine and modeled TLR4. a) Docked complex of TLR4 and multi-epitope 
vaccine generated by Z-DOCK server. b) Cluspro server used to generate binding sites of multi-epitope vaccine with TLR4. 

 

3.11. Molecular dynamic simulation 
Natural state analysis (NMA), large-scale flexibility, 

and stabilization of the recombinant vaccine were 
investigated by the iMOD server. This server is 
relevant to the internal coordinates of the docked 
complex. Figure 7a shows the probable deformity of 
the vaccine-TLR-4 related to the individual distortion 
of any residue shown by the chain hinges (green). 
Figure 7b shows the B-factor values equivalent to the 
RMS inferred via NMA. Figure 7c shows the eigenvalue 

for the complex, equal to 1.922. Figure 7d 
demonstrated the colored bars of the cumulative 
(green) and individual (red) variances that are 
inversely related to the eigenvalue. Figure 7e shows 
the coupling between the different interactions of the 
residues by the covariance matrix, i.e., uncorrelated to 
white, red-correlated, and anti-correlation with blue. 
Figure 7f shows the elastic network model that 
distinguishes pairs of atoms associated with springs. 

 

 

Figure 7. Schematic displaying the findings  of MD simulation study of TLR-4 and recombinant vaccine docked complex. Here, (a) 
eigenvalues, (b) B-factor, (c) deformability, (d) variances, (e) covariance and (f) elastic network analysis. 
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3.12. Codon optimization and in silico cloning 
The SMS server conducted back translation of the 

vaccine construct. JCAT server was used to assess the 
key properties of the vaccine DNA sequence, including 
the GC content and Codon Adaptation Index (CAI). The 
CAI value for the optimized nucleotide sequence was 
1, and the GC content of the optimized sequence was 
calculated as 50.11% in E. coli. These outcomes 
suggest that the optimized vaccine DNA sequence will 
have a maximum expression yield in E. coli. 

4. Discussion  
The number of people who get infected by COVID–

19 diseases has increased day by day, as well as the 
increase in mortality that has caused international 
concern (38). Therefore, vaccination is an effective 
way to prevent COVID–19 diseases (39). 

In this research, we determined the epitopes of 
potentially immune cells of two SARS-CoV-2 antigens 
and designed a multi-epitopes vaccine against current 
variants COVID-19. The SARS-CoV-2 antigenic proteins 
were evaluated by using in-silico tools, and then the 
antigenic parts of the Nucleocapsid and Spike proteins 
were selected for use in the novel vaccine. 
Immunoinformatic approaches are novel strategies 
for identifying, designing, and manufacturing specific 
antigen epitopes for use in a variety of purposes such 
as; vaccines, immunotherapy, etc. (40). 

The novel multi-epitope vaccines are designed to 
stimulate the immunity of specific pathogens by 
selectively stimulating specific B-cell and T-cell 
antigens (41). In comparison with viruses that posse’s 
DNA genetic material, viruses that contain RNA 
genetic material such as SARS-CoV-2 have a greater 
tendency to mutation. These mutations in this virus  
occur because of the lack of proofreading activity of 
polymerases, and this phenomenon causes resistance 
to drugs and escapes from immune surveillance (42-
44). These mutations led to emerging of new variants, 
of which the UK B1.1.7 strain is one. This strain 
possesses transmissibility of up to 71% over, increased 
clinical severity of illness, and vaccine escape 
capability (10). 

Spike protein has two important regions with 
conserved sequences, include the receptor-binding 
domain (RBD) and N-terminal domain (NTD). These 
two regions are characterized by surface exposure and 
high antigenicity, and these two regions are outside of 
the area prone to mutations (45). In contrast, the 
Nucleocapsid protein is more conserved and stable, 
with 90% amino acid homology and fewer mutations 
over time. Nucleocapsid proteins of many 
coronaviruses are expressed abundantly during 
infection and are highly immunogenic (46). It was 
reported that high levels of IgG antibodies against N 
protein were secreted in the sera of SARS patients 

(47). In SARS vaccine design, N protein was used for T-
cell proliferation, response, and cytotoxic activity (48, 
49).  

The COVID–19 multi-epitope vaccine design was 
performed by in silico tools in several steps, includes 
immunoinformatic analysis, selection of conserved 
epitopes and multi-epitopes vaccine construction, 
immunoinformatic evaluation, analysis of secondary 
and third structures and study of the interaction 
between the novel vaccine and ligand (TLR-4). An 
effective vaccine must have both T-cell epitope and B-
cell epitope to stimulate cellular and humoral 
immunity against pathogens (41). Appropriate servers 
were used to predict epitopes of T-cells and B cells. 
There are two main types of cells that have functions 
in the immune system, including T lymphocytes and B 
lymphocytes (50). The epitopes of T-cell (MHC-I, MHC-
II) and B-cell were identified by the servers of 
RANKEPEP and IEDB, respectively. High-scoring and 
potential epitopes (T-cell and B-cell epitopes) with 
non-toxicity, non-allergenicity, and antigenicity were 
selected for recombinant vaccine construction. 

Then, the PEP-FOLD server generates three-
dimensional structures of MHC class-I epitopes and 
MHC class-II epitopes to study molecular docking. All 
selected T-cell epitopes have acceptable molecular 
docking scores, so it can be concluded that all selected 
epitopes have the ability to bind to their respective 
targets and stimulate an immune response in a robust 
manner.  

After studying the docking of T-cell epitopes, the 
design of the recombinant construction was 
performed. An adjuvant is an essential component of 
the novel human vaccines (51). These compounds are 
used to increase the immunogenicity of vaccines, 
including DNA vaccines and multi-epitope vaccines 
(52). Therefore, combining adjuvants with protein 
epitopes can effectively stimulate specific antigen-
specific immune responses (53). MBP, a protein with a 
molecular weight of 42 kDa, is responsible for binding 
and transporting maltose from the periplasmic space 
of bacteria of the Gram-negative model. MBP has 
been reported to act as an adjunct to specific 
immunity through specific receptors. It has also been 
reported that this protein increases lymphocytes (54-
56). In this recombinant vaccine construct, MBP was 
used as an adjuvant. On the other hand, MBP also can 
facilitate the expression and purification process of 
recombinant vaccine in E. coli, by one-step purification 
using affinity chromatography (57). 

The linker is an important component in fusion 
epitopes to the design of a recombinant construction. 
Based on the structure of the linkers, the linkers are 
divided into 3 types, which include: flexible linkers, 
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rigid linkers, and cleavable linkers. Hare, GSGSGS 
flexible linker and AAYKK cleavable linker were used 
for fusion between the epitopes, and the EAAAK rigid 
linker was used for fusion between the adjuvant and 
the epitope (58). 

After vaccine construct design, the allergenicity, 
toxicity, antigenicity, and physiochemical analysis 
revealed that the designed vaccine was stable and 
possessed proper immunogenicity. Moreover, 
molecular docking and molecular dynamics 
simulations indicate that the designed vaccine has 
stable interaction with TLR4 ligand. 

In the end, codon adaptation and in silico cloning 
experiments were performed to ensure that vaccine 
efficiently express in the target host, E. coli strain K12. 
(59, 60). 

 

5. Conclusion 
COVID-19 pandemic is the deadliest outbreak in 

recent decades. Prevention of the newly emerging 
novel coronavirus infection and mutated form of that 
is a very challenging problem for global health. In silico 
tools can help us to conquer this problem by saving 
time and cost. In this study, immunoinformatic and 
reverse vaccinology help us design a potential multi-
epitope vaccine against this new virus. Various in silico 
and computational studies of the proposed vaccine 
constructs indicate that this multi-epitope vaccine 
might confer proper immunogenic response. With 
complementary experimental and clinical studies, the 

current study should be helpful to researchers to 
develop a potential vaccine against SARS-CoV-2 virus 
variants. 
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