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Abstract
Objective  Severe acute respiratory syndrome coronavirus 2 (SARS-COV2) was first detected in Wuhan, China in December, 
2019. The emerging virus causes a respiratory illness, that can trigger a cytokine storm in the body.
Method  Cytokine storm in patient’s body is associated with severe forms of disease. It is one of the main complications of 
coronavirus disease-2019 (COVID-19), in which immune cells play a major role. Studies have shown immune cells in the 
tumor environment can be effective to induce resistance to chemotherapy in cancer patients.
Result  Therefore, considering the role of immune cells to induce cytokine storm in COVID-19 patients, and their role to 
cause resistance to chemotherapy, they are effective on disease progression and creation of severe form of disease.
Conclusion  By examining the signaling pathways and inducing resistance to chemotherapy in tumor cells and the cells 
affect them, it is possible to prevent the occurrence of severe forms of the disease in cancer patients with COVID-19; it is 
applicable using target therapy and other subsequent treatment strategies.
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Introduction

In late December 2019, an outbreak of pneumonia associ-
ated with a novel coronavirus, coronavirus disease-2019 
(COVID-19), was first reported in Wuhan, Hubei Province, 
China; it quickly spread in all the countries around the 
world. The virus targets human respiratory system and has a 
relatively high mortality rate. Fever, cough, musculoskeletal 
and gastrointestinal symptoms and fatigue are the common 
symptoms of virus infection [1, 2].

Accumulating evidence indicates cytokine storm syn-
drome may be present in the severely ill COVID-19 patients; 
it is a sign of immune dysregulation [3]. It has been shown 
to be associated with poor outcomes in COVID-19 patients. 
Cytokine storm is characterized by secretion of interleukins, 
interferons, chemokines, tumor-necrosis factors (TNF) and 
several other inflammatory mediators [4]. Plasma concen-
tration of multiple inflammatory cytokines, such as granu-
locyte–macrophage colony-stimulating factor (GM-CSF), 
interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-
α), IL-2, 7, 10, and granulocyte colony-stimulating factor 
(G-CSF) increases following Severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection.
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In addition, it is demonstrated that peripheral inflam-
matory monocytes and pathogenic T cells might induce 
cytokine storms in severe COVID-19 patients [5, 6]. Vari-
ous conditions including malignancies, sepsis, macrophage 
activation syndrome (MAS), systemic juvenile idiopathic 
arthritis (SJIA), cytokine release syndrome (CRS) and acute 
respiratory distress syndrome (ARDS) are generated by 
cytokine storm [7].

A higher risk of severe stages of COVID-19 infection is 
reported in actively treated cancer patients. It is also shown, 
that unlike the events in severely ill COVID-19 patients, 
cancer development is usually associated with immune 
responses dampen; it is portrayed via the increased secretion 
of anti-inflammatory cytokines, repressed induction of pro-
inflammatory mediators and enhanced population of immu-
nosuppressive leukocytes [8]. According to these reports, the 
cytokine storm threatens life in COVID-19 patients, but it 
can be a therapeutic option in cancer patients. In this study, 
the pathophysiology of cytokine storm has been studied in 
response to COVID-19 infection in malignancies.

Cytokine release: protective 
versus pathogenesis

Cytokine storm occurs with a sudden increase in the level of 
pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α. 
These cytokines are among the most important pro-inflam-
matory ones; they considered as the innate immunity, and 
are produced by cells such as macrophages and inflamed 
endothelial cells. Increased level of these cytokines in blood 
leads to the summoning of immune cells to the inflamed and 
infected sites, which in turn leads to tissue damage, organ 
failure and eventually death [9, 10].

Some cytokines have the protective role, while others 
have the pathological role. Cytokine storm has also been 
reported in COVID-19 patients; serological assessments of 
plasma indicates increased levels of IL-1b, IL-6, IL-10 and 
TNF-α in the cited patients. Studies have also shown, that 
increase in these cytokines leads to disease progression and 
worsening patients' clinical conditions, which ultimately 
leads to survival reduction [11, 12]. Despite various stud-
ies, the molecular mechanisms of these cytokines (IL-1, IL-6 
and TNF-α) in relation to the pathogenesis of malignancy in 
COVID-19 patients have not been fully identified yet.

IL‑6

IL-6 is a pleiotropic cytokine, that has a wide range of bio-
logical activities, including: immune regulation, hemat-
opoiesis, inflammation, effects on metabolic, proliferative 
and regenerative processes. It is produced by various cells in 

the tumor microenvironment (TME), and plays an important 
role in the expansion and differentiation of tumor cells [13].

IL-6 binds to the IL-6R (IL-6 Receptor) on the surface of 
target cell to form a heterohexameric complex, consisting of 
two molecules IL-6 and IL-6R, together with the IL-6 recep-
tor subunit (gp130). In the downstream, the signaling path-
way of this cytokine is activated by the JAK/STAT pathway. 
This pathway is also involved in a process called Epithelial 
Mesenchymal Transition (EMT), by activating a series of 
transcription factors.

Snail, Zeb1, JUNB and Twist1 are among the most 
important copying factors in the EMT induction pathway 
(EMT-TF) [14]. Snail transcription factor via Smad1/AKT/
GSK3β signaling pathway and increased expression of 
Nanog molecule can induce EMT in cell. Regarding other 
effective factors in EMT, the Zeb1 factor also applies a pos-
itive feedback to HAS2 molecule; also, JUNB factor can 
lead to EMT process by activating the TGF-β molecule, and 
using its related signaling pathway [15–17].

Finally, Twist1 factor can induce EMT process in cells 
by reducing the H2AX expression, and subsequently by 
increasing the expression of VCAN, THBS1, TGFB2, 
ITGB4, SERPINE genes, and reducing the expression of 
CDH1, CTNNB1, OCLN genes [18]. EMT status plays an 
important role in resistance to chemotherapy, so the JAK/
STAT signaling pathway through this condition can lead to 
resistance to chemotherapy in patients with malignancy.

On the other hand, the heterohexameric complex IL-6/
IL-6R/gp130 can induce PI3K/AKT and MAPK/ERK sign-
aling pathways in its downstream. These pathways also lead 
to the EMT status by applying Snail and Slug transcription 
factors, and increasing the expression of E-Cadherin and 
N-cadherin molecules; by inducing this process in cells, they 
lead to resistance to chemotherapy in people with malig-
nancy [19]. Studies show an increase in IL-6 levels in cancer 
patients with COVID-19, indicating a cytokine storm [20, 
21]. It is hypothesized that, due to cytokine storms, elevated 
IL-6 levels in COVID-19 cancer patients and using the men-
tioned pathways in them, the phenomenon of resistance to 
chemotherapy drug occurs; it is accompanied by therapeutic 
effect decrement, increased mortality and survival reduction 
in patients.

IL‑1

The IL-1 family includes IL-1α, IL-1β, and IL-1 Receptor 
Antagonist (IL1-Ra). IL-1α/β binds to the IL-1 type one 
receptor at the surface of the target cell. Recent studies have 
shown, that IL-1 and its signaling pathways play an impor-
tant role in tumorigenesis and cancer progression [22]. IL-1β 
can induce EMT process in cells by two ways. In one of 
these pathways, IL-1β combines with IL-1R1 and β-Catenin 
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to form the IL-1β/IL-1R1/Beta-Catenin; on the other hand, 
IL-1β increases the expression of Twist1 transcription factor 
by activating the PI3K/AKT signaling pathway; which plays 
an important role in the EMT process. It can subsequently 
induce the phenomenon of chemo resistance.

Also, Twist1 transcription factor produced in the down-
stream of the above pathway can lead to estrogen receptor 
methylation (ER1). By causing this epigenetic change, it 
reduces ERα receptor expression and causes resistance to 
Tamoxifam. The ER1 is the target of Tamoxifam drug [23].

On the other hand, IL-1 activates the NF-Kβ transcription 
factor in its downstream signaling. Studies have shown, that 
NF-Kβ levels are inversely related to the PTEN molecule 
level in a person with malignancy and chemo resistance; it 
means, that NF-Kβ is high and PTEN is low in these people. 
IL-1 increases miR-21 transcription by activating the NF-Kβ 
transcription factor in people with malignancy. This micro-
RNA inhibits cellular apoptosis by suppressing the expres-
sion of PTEN molecule.

Subsequently, Caspase 3 can lead to chemo resistance 
induction in cited individuals [24]. In COVID-19 patients, 
IL-1 increases following cytokine storm. Considering the 
role of IL-1 to induce chemotherapy resistance in cancer 
patients with COVID-19, it is hypothesized the survival rate 
reduces and the treatment process is challenged.

Tumor necrosis factor‑alpha (TNF‑α)

TNF can be involved in activating, inducing function and 
differentiating the immune regulatory cells, such as Mye-
loid-derived Suppressor cell and the Regulatory T cell 
through the use of TNF-R2. It also plays an impressive role 
in cancer cells differentiation and tumorigenesis induction.

It also activates the Snail transcription factor through the 
AKT/GSK3β/Snail signaling pathway, which is involved in 
EMT process; subsequently, the chemo resistance phenom-
enon is induced in tumor cells [25].TNF can also induce 
immune check point molecules expression, such as PDL1 
and CD73 in cancer cells. The expression of these mole-
cules is also effective to induce chemo resistance [26]. Thus, 
NF-Kβ transcription factor increases PDL1 expression, and 
consequently increases PDL1 expression on the surface of 
tumor cells by binding to its receptor; PD1 on the surface of 
Cytotoxic T lymphocyte (CTL) reduces the inhibitory func-
tion of CTL on tumor cells.

Through the ERK and mTOR signaling pathway, it can 
induce proliferation, tumor cells survival increment, and 
resistance to chemotherapy drugs. So, blocking the PDL1 
signaling pathway using monoclonal antibodies is effective 
to improve treatment process with chemotherapy drugs in 
people with malignancy [27].

Downstream of the MAPK signaling pathway, the C-jun/
AP-1 transcription factor also increases the CD73 molecule 
expression. CD73 can also increase the number of tumor 
cells through HGF/Met/ERK1 pathway. Subsequently, 
increased expression of CD73 through A2B Adenosine 
Receptor, and increased expression of Multi Drug Resist-
ance Associated Protein 1 (MDR P1) molecule can lead to 
chemo resistance [28].

Some studies have shown, that despite the tumorigenesis 
role of TNF molecule, it can also induce apoptosis by bind-
ing to TNFR1 on the surface of tumor endothelial cells; it 
also plays an important role in the process of chemo sensi-
tivity. By increasing the expression of TNF-related apopto-
sis inducing ligand (TRAIL) and TRAIL receptors, such as 
DR4 and DR5 on the surface of cancer cells, chemotherapy 
drugs increase Caspase8; subsequently, it induces apoptosis. 
Therefore, it can play a positive role in the process of treat-
ment with chemotherapy drugs [29–31].

TNF can also act as an antitumor molecule, by activating 
the CTLs and tumor-infiltrating macrophages and dendritic 
cells (DCs), and thereby lead to chemo sensitivity [32]. It 
is elevated in COVID-19 infected individuals following a 
cytokine storm. However, due to its dual role in inducing 
chemotherapy resistance and creating a positive effect on 
chemotherapy, more studies are needed to decide about its 
effect on the process of chemotherapy in cited patients.

Aberrant function of innate immune cells

Monocyte and macrophage

Monocytes are components of mononuclear phagocytic 
system, that play an important role in regulating immune 
responses. These cells can also be effective to induce 
cytokine storm by releasing pro-inflammatory cytokines; 
they can induce cytokine storm in COVID-19 patients, too 
[5]. Monocytes are also impressive in generating chemo 
resistance in cancer patients.

Surrounding tumor cells are a number of cells, includ-
ing Tumor Associated Macrophages (TAMs) and Bone-
Marrow derived macrophages (BM-DMs). TAMs play an 
important role in tumor cells growth and inducing resist-
ance to chemotherapy drugs. BM-DMs infiltrate tumor cells 
through DAMP, CCL2, and CSF-1 molecules; they are also 
called M1-like macrophages. Tumor cells secrete cytokines, 
such as IL4, IL10, IL13, and lactic acid in association with 
CD4 + (Th2) T cells, leading to M1 to M2 macrophage 
polarization [33, 34].

M2 macrophages can also play an important role in 
proliferation, angiogenesis, and EMT induction in tumor 
cells by secreting factors such as EGF, VEGF, and PDGF; 
it subsequently leads to their resistance to chemotherapy 
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drugs [35, 36]. Secreted EGF by M2 macrophages induces 
RAS/RAF/MAPK, PI3K/AKT and PLC/PKC/CAMK sign-
aling in the downstream of EGF/EGFR signal transmission 
pathway in the tumor cells, and via binding to the EGFR 
receptor on the surface of cited cells; it subsequently can 
be effective to create survival and proliferation of malig-
nant cells through the mentioned signaling pathways [37] 
(Fig. 1).

In addition, EGF can induce EMT in the tumor cells via 
ERK1/2-phospho-Smad2/3-Snail signaling pathway [38, 39] 
(Fig. 1). VEGF can also lead to angiogenesis in TME by 
binding to its receptor called VEGFR; it acts via the PI3K/
AKT signaling pathway. Subsequently by TGF-β/Smad 
and TGF-β/Snail/Slug signaling pathways, EMT is induced 

in tumor cells; EMT process plays an effective role in the 
resistance of tumor cells to chemotherapy drugs [40, 41].

On the other hand, PDGF secreted by M2 macrophages 
can also lead to angiogenesis by utilizing the TGF-β signal-
ing pathway. It also induces EMT in tumor cells by Notch1/
Twist1 pathway, and finally induces chemotherapy resist-
ance [40, 42]. In general, EGF, VEGF and PDGF can induce 
EMT, and chemotherapy resistance in cancer cells through 
the TGF-β/Smad pathway. Therefore, this common path-
way can be used to create appropriate therapies to reduce 
the effect of chemotherapy resistance [43–45]. Considering 
the role of monocyte to induce cytokine storm in COVID-
19 patients, and also its role to induce chemo resistance in 
cancer patients, it seems they can worsen patient’s condition.

Fig. 1   The role of cytokine-induced immune cells in resistance to 
chemotherapy drugs in cancer cells. Cancer cells via EMT, cell sur-
vival, angiogenesis, proliferation, and cytokine storm-induced meta-
static power can inhibit chemotherapy drugs. It leads to the chemo 
resistance phenomenon in people with cancer. Therefore, timely 
detection of signaling pathways during the cytokine storm can mini-
mize the occurrence of chemo resistance in people with COVID-19. 
Abbreviation: TME tumor microenvironment, EGF epidermal growth 

factor, PKC protein kinase C, PI3K phosphatidylinositol-4,5-bispho-
sphate 3-kinase, PLC phospholipase C, MAPK mitogen-activated 
protein kinase, ERK extracellular signal-regulated kinase, ROS reac-
tive oxygen species, TGF-β transforming growth factor-beta, JAK just 
another kinase, STAT​ signal transducer and activator of transcription, 
NF-Kβ nuclear factor kappa light chain enhancer of activated B cells, 
HMGB1 high mobility group box 1, miR microRNA, EMT epithelial–
mesenchymal transition, MMP matrix metalloproteinase
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Therefore, activation of monocytes can be prevented by 
providing the appropriate cell therapies; it consequently 
reduces the induction of cytokine storm and chemotherapy 
resistance in COVID-19 cancer patients, and will improve 
the process of treatment.

Neutrophils

Neutrophils are important cells in defense against micro-
organisms; they are one of the essential cells in the innate 
immune responses. In addition, neutrophils in people with 
COVID-19 may be a part of process to induce cytokine 
storm. After calling neutrophils to inflamed alveolar cells 
and exposure to SARS-COV2, they can induce cytokine 
storm through the formation of Neutrophil Extra Cellular 
Trap (NET) network [46].

Studies have also shown, that neutrophils are involved in 
chemotherapy resistance induction in people with cancer. 
Neutrophils called Tumor Associated Neutrophil (TAN) can 
secrete IL-17 and release Reactive Nitrogen Species (RNS) 
and Reactive Oxygen Species (ROS) in TME; they also form 
a NET network to induce EMT in tumor cells. These pro-
cesses lead to cancer cells progression and chemotherapy 
resistance induction [47].

TAN cells secreted IL17a in the TME binds to the IL17R 
receptor on the surface of tumor cells; IL17a can induce 
EMT in the tumor cells using JAK2/STAT3 signaling path-
way in the downstream of this receptor [48]. Produced ROS 
by TAN cells lead to the activation of extracellular matrix-
associated TGF-β latent complex. By activating the latent 
TGF-β complex on tumor cells surface, and then its binding 
to TβRI and TβRII receptors on cell surface, it activates and 
phosphorylates the Smad 2,3 molecules in the downstream 
of these receptors, which can induce EMT process in tumor 
cells (Fig. 1).

Also in another path called non Smad signaling path-
way, which causes TGF-β binding to its receptors in the 
downstream, using molecules such as ERK1,2/JNK/NF-Kβ 
can start EMT process in tumor cells (Fig. 1). On the other 
hand, the activity of NOXs increases through the NF-Kβ 
pathway; consequently, this molecule can also produce ROS 
from tumor cells and leads to a synergistic effect on ROS 
produced by TANs. Thereby, it increases EMT induction in 
tumor cells [49].

RNS secreted by TANs can also lead to phosphorylation 
and activation of the CREB molecule by Protein Kinase A 
in tumor cells; this molecule can also induce EMT through 
these pathways [50]. In tumor cells, the CREB molecule 
activates an lncRNA, called HULC; this lncRNA can induce 
angiogenesis and EMT by suppressing miR-107 and miR-
200a-3P. miR-107 suppression increases the efficiency of 
E2F1/SPHK1 molecules, and finally these molecules lead 
to angiogenesis in the tumor cells.

Suppression of miR-200a-3P also increases ZEB1 tran-
scription factor activity; in the next step, EMT process 
occurs in the tumor cells. On the other hand, HULC lncRNA 
can induce proliferation in the tumor cells in cooperation 
with P18 molecule [51]. As a result, by inducing the pro-
cesses of angiogenesis, EMT and tumor cells proliferation 
increment, chemo resistance also occurs in these cells. In 
addition, the formed NET network in the TME medium can 
activate the EMT process in tumor cells via TGF-β signal-
ing pathway [52].

Considering the role of neutrophils to induce chemo-
therapy resistance and cytokine storm creation, it is hypoth-
esized that, their function can worsen the COVID-19 cancer 
patient’s condition. In other words, neutrophil count incre-
ment in these patients is a sign of low survival; it also com-
plexes the treatment process.

Dendritic cells

Dendritic cell (DC) is a professional antigen presenting cell 
(APC), that plays a key role in relationship between innate 
and acquired immune responses. DCs can also be effective 
in inflammation induction. Of course, their role in inflamma-
tion is effective on T-helper cells polarization. In COVID-19 
patients, DCs are also indirectly involved in cytokine storm 
induction; they affect T helper cells [53].

Studies have shown, that DCs play an important role to 
induce chemo resistance in patients with malignancy. In 
tumor medium, DCs called Tumor-Associated Dendritic 
Cell (TADCs) are present, which are effective in angio-
genesis, metastasis and EMT induction in tumor cells; in 
this way, they can cause resistance to chemotherapy drugs 
[54]. They are also impressive in the progression of cancer 
cells by secreting CCL5 chemokine, and inducing MALT1/
Snail signaling pathway in tumor cells [55]. DCs can secrete 
IL-10; it can also induce angiogenesis in TME, by inducing 
IL10/STAT signaling pathway [56] (Fig. 1).

In addition, these cells can secrete CXCL5 chemokine in 
TME medium. By CXCL5binding to CXCR2 receptor on the 
surface of cancer cells, CXCL5 can induce two important 
signaling pathways; they are effective to induce EMT and 
metastasis in tumor cells. Thus, in ERK/Elk1/Snail pathway, 
the EMT process occurs in cancer cells, and in another path-
way called AKT/GSK3β/β-Catenin/MMP, metastasis occurs 
in cancer cells [57] (Fig. 1).

CXCL1e is another chemokine secreted by DCs in TME; 
it plays an important role in the metastasis and EMT induc-
tion in tumor cells [54]. It induces the NF-Kβ/SOX4 and 
ERK/MMP2,9 signaling pathways by binding to its receptor 
on the surface of tumor cells; mentioned pathways play vital 
roles in tumor cell metastasis, migration and invasion [58, 
59]. Also, by connecting CXCL chemokine to CXCR4, AKT 
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signaling pathway is activated in the downstream of which 
is the fork head box class (FOX) molecule.

The FOX molecule can activate the Wnt signaling path-
way due to T-cell Factor (TCF)/Beta-Catenin/FOX complex; 
it leads to EMT induction in cancer cells [60]. In TME and 
under acidic conditions, some cancer cells secrete TGF-β2 
molecules; they bind to the TGFβR1, leading to TGF-β/
Smad 2,3 pathway induction. Downstream of this pathway, 
the enzyme diacylglycerol O-acyltransferase (DGAT) is acti-
vated, which leads to the accumulation of lipid particles in 
the DCs called Lipid Droplet (LD); it prevents DCs activa-
tion and migration to the lymph nodes to induce TCD8 + 
function, and remove present tumor cells in TME. It inhibits 
tumor cells suppression by immune system [61].

Therefore, by suppressing the DCs in TME, they perform 
their role as the antigen presenters to produce TCD8+ cells. 
TCD8+ can remove tumor cells and secretes chemokines and 
other soluble substances, which give the ability to induce 
EMT and metastatic power to tumor cells. DCs induce resist-
ance to chemotherapy in TME due to TCD8+ effects.

Considering the cited roles of DCs, they will worsen the 
condition of cancer patients. Therefore, using appropriate 
cell therapies a useful treatment strategy can be presented in 
COVID-19 patients suffering malignancy, to overcome the 
phenomenon of chemotherapy resistance.

NK cells (natural killer cell)

NK cells are in the primary line of defense against viral 
pathogens. They can also induce cytokine storm in COVID-
19 infected patients. NK cells also play a vital role to induce 
resistance to chemotherapy in cancer patients. They lead to 
tumor cells progression through the High Mobility Group 
Box1 (HMGB1) molecule, which in turn induces chemo 
resistance [62, 63]. HMGB1 secretion induces STAT3/
miR-34a/NF-Kβ signaling pathway in tumor cells; subse-
quently this pathway leads to angiogenesis and EMT process 
in tumor cells [64] (Fig. 1). In another pathway induced by 
HMGB1 in tumor cells, it can play a decisive role in tumor 
cell metastasis by interacting with the Brahma-Related Gene 
1 (BRG1) molecule, and activating AKT signaling pathway 
[65, 66].

NK cells secrete TGF-β and macrophage migration 
inhibitory factor (MIF) in the tumor environment; they are 
also effective to induce EMT in tumor cells. TGF-β induces 
Snail 1,2, Id1 and Runx 2 transcription factors activity, via 
the Smad 2,3/Smad 4 molecule in the downstream of own 
signaling pathway; they are also important to set up EMT 
process in tumor cells. Finally, TGF-beta can induce EMT 
in tumor cells [67]. TGF-β can also induce migration and 
invasion in the tumor cells by activating the EGFR receptor 
through Smad3/ERK/SP1 signaling pathway; cited processes 

lead to chemotherapy resistance through tumor cells aggres-
sion [68, 69].

The secreted MIF molecule can induce Akt signaling 
pathway in tumor cells by binding to the CXCR4. It induces 
EMT in the tumor cells, using EMT associated transcription 
factors (EMT-TF). Also, EMT-TF can induce angiogenesis 
in TME by decreasing E-cadherin expression, and increas-
ing N-cadherin and Vimentin expression. Angiogenesis and 
EMT play an effective role to induce resistance to chemo-
therapy drugs [70]. According to the cited facts, it seems NK 
cells will progress disease and increase mortality in patients.

Aberrant function of adaptive immune cells

Lymphocytes are the main executive cells in adaptive 
immune responses. They are involved in cytokine storm 
induction in COVID-19 patients, and can also induce resist-
ance to chemotherapy drugs in tumor cells. In the tumor 
medium, T lymphocytes secrete cytokines such as IL-17 and 
IL-13; the second one causes resistance to chemotherapy 
drugs [71]. These cytokines induce Akt signaling pathway in 
tumor cells. This signaling pathway using Snail transcription 
factor can induce EMT process in tumor cells; it also leads 
to VEGF production through IL-6 upregulation and subse-
quent application of JAK2/STAT3 signaling pathway in the 
downstream of IL-6 (Akt dependent IL-6/JAK2/STAT3). 
VEGF plays an important role in inducing angiogenesis in 
TME [72].

IL-17 is also impressive in migration and invasion of 
tumor cells through NF-Kβ/ZEB1 signaling pathway; it also 
induces EMT process [73] (Fig. 1). Therefore, by inducing 
the EMT process and angiogenesis in TME medium, chemo-
therapy resistance occurs. IL-13 can also induce EMT and 
chemotherapy resistance via STAT6 signaling pathway [74].

CXCL13 is a T lymphocytes secreted chemokines in 
TME; it is also effective to induce resistance to chemother-
apy drugs [75]. It can induce two MEK/ERK and Rac-GEF 
signaling pathways by binding to the CXCR5 on the surface 
of tumor cells, which result in resistance to chemotherapy 
drugs. MEK/ERK also leads to proliferation of tumor cells, 
and Rac-GEF signaling pathway is effective in cancer cells 
migration.

In addition to the two signaling pathways, CXCL13 bind-
ing of T lymphocytes to CXCR5 on the surface of tumor 
cells via PI3K/Akt signaling pathway can be effective to 
increase the survival of tumor cells; it is also important in 
cancer progression and increasing drug resistance [76].

B lymphocytes in TME medium are also effective 
in chemotherapy resistance creation. Thus, secretion of 
CCL22 chemokine from B lymphocytes can lead to tumor 
cells resistance to chemotherapy, through CCL22/PI3K/
Akt signaling pathway [77] (Fig. 1). B lymphocytes are also 



Molecular Biology Reports	

1 3

important in the phenomenon of drug resistance through 
CXCR4/CXCL12 signaling pathway [78]. By CXCL12 
binding to CXCR4, JAK2/STAT3 signaling pathway is gen-
erated in their downstream, which results in STAT3 phos-
phorylation by the JAK2 enzyme.

Phosphorylated STAT3 molecule can lead to BCL-XL, 
BCL2 and Cyclin D1 molecules transcription in tumor cells; 
they inhibit apoptosis and induce proliferation by cell cycle 
advancing; the product of which is the development of resist-
ance to chemotherapy drugs [79]. It is hypothesized, that 
lymphocytes may worsen the clinical condition in COVID-
19 cancer patients.

In addition to immune cells, other cells may be also 
important in inducing cytokine storms in patients with 
COVID-19; one of the most important of these cells is 
fibroblasts [80]. They can be effective in promoting cancer 
and resistance to chemotherapy by inducing cytokine storm 
in the cited population. IL-8 and the CXCL8 chemokine 
secreted by active fibroblasts bind to CXCR2 on the surface 
of cancer cells. In the next step, Prostaglandin J2 molecule 
can activate Snail, Slug, and ZEB1 transcription factors in 
the downstream of CXCR2 signaling pathway.

Cited transcription factors by binding to the E-box of 
the E-cadherin molecule, lead to downregulation of this 
molecule; they can induce EMT in cancer cells. Since 
EMT can play an important role in inducing the chemo 
resistance phenomenon in cancer cells, the consequence of 
the above signaling pathway is chemo resistance develop-
ment in cancer patients with COVID-19. Also, the ZEB1 

transcription factor, which is activated in downstream of 
this signaling pathway, can inhibit apoptosis induction 
of chemotherapy drugs by binding to the P53 molecule. 
Finally, P53 degradation leads to drug resistance in cancer 
patients with COVID-19 [81, 82].

Conclusion

Considering the role of immune cells and pro-inflam-
matory cytokines in the occurrence of cytokine storm 
and subsequent induction of resistance to chemotherapy 
(Tables 1 and 2), it is important to identify the signaling 
pathways. The cytokine storm is effective in the devel-
opment of severe form of the disease in cancer patients 
infected with SARS-COV2 virus; by identifying these 
pathways and providing appropriate treatment strategies 
the incidence of disease can be reduced in cancer people 
with COVID-19.

It is important to note, when the patient is healthy after 
the end of cytokine storm, it will not have any effects on 
cancer treatment process. Therefore, only at the beginning 
of the cytokine storm and before its end, signaling path-
ways induction can have a negative effect on the treatment 
response in cancer patients, and also affect survival rate of 
these patients. So, early detection of cytokine storm in can-
cer patients with COVID-19 is also important to maximize 
the effectiveness of target therapy.

Table1   Summary of some cytokines involved in the chemotherapy resistance

IL-6 interleukin-6, NSCLC non-small cell lung carcinoma, TIMP-1 tissue inhibitor of metalloproteinase-1, STAT3 signal transducer and activa-
tor of transcription 3, IL-1 interlukin-1, IRAK4 interleukin-1 receptor associated kinase 4, NF-Kβ nuclear factor-kβ, PDAC pancreatic ductal 
adenocarcinoma, AML acute myeloid leukemia, ARC​ apoptosis repressor with caspase recruitment domain, COX-2 cyclooxygenase-2, PGE2 
prostaglandin 2, TNF-α tumor necrosis factor alpha, NTF N-terminal fragment, ERK extracellular signal-regulated kinase, GST-π glutathione 
S-transferase-π, DOX doxorubicin, MEK mitogen-activated protein kinase kinase, ZEB1 δ-EF1, TGF-β transforming growth factor beta, PI3K 
phosphoinositide 3-kinase, Akt serine threonine kinase, CDC2 cell-division cycle 2, WNT wingless-related integration site, SMAD4 SMAD fam-
ily member 4, EMT epithelial-mesenchymal transition, miR MicroRNA

Cytokine Type of disease Mechanism Potential drug Refs.

IL-6 ovarian cancer IL-6 induced chemo resistance is dependent on the PYK2 phosphorylation Carboplatin [83]
IL-6 NSCLC IL-6 in the STAT3 pathway leads to the TIMP molecule expression, and thus can 

induce drug resistance
Gemcitabine [84]

IL-1 Pancreatic Cancer Tumor-Stroma IL-1β-IRAK4/NF-Kβ pathway induces chemo resistance in the 
PDAC patient

Paclitaxel [85, 86]

IL-1 AML IL1β/Cox-2/PGE2/β-Catenin/ARC pathway induces drug resistance in acute 
myeloid leukemia (AML)

Cytarabine [87]

TNF-α Breast cancer TNF-α/NTF-ERK-GST-π axis and TNF-α/NTF-NF-κB- mediated anti-apoptotic 
functions are required for TNF-α-induced DOX-resistance

6-Mercaptopurine [88]

TNF-α Breast cancer The MEK5/Erk5 pathway through the SNAIL2 and ZEB1 molecules expression can 
induce EMT, and consequently drug resistance

Docetaxel [89, 90]

TGF-β Colorectal cancer Lack of SMAD4 molecule in the downstream of TGF-β signaling can induce drug 
resistance by activating PI3K/Akt/CDC2/Survivin pathway

Vincristine [91, 92]

TGF-β NSCLC Simultaneous over activation of Wnt/β-catenin and TGFβ signaling by miR-128-3p 
confers chemo resistance

Cisplatin [93]
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