The possible association between Toxoplasma gondii infection and risk of anxiety and cognitive disorders in BALB/c mice

Hossein Mahmoudvand, Naser Ziaali, Iraj Aghaei, Vahid Sheibani, Saeideh Shojaee, Hossein Keshavarz & Mohammad Shabani

To cite this article: Hossein Mahmoudvand, Naser Ziaali, Iraj Aghaei, Vahid Sheibani, Saeideh Shojaee, Hossein Keshavarz & Mohammad Shabani (2015) The possible association between Toxoplasma gondii infection and risk of anxiety and cognitive disorders in BALB/c mice, Pathogens and Global Health, 109:8, 369-376

To link to this article: http://dx.doi.org/10.1080/20477724.2015.1117742

Published online: 18 Feb 2016.

Submit your article to this journal

Article views: 1

View related articles
The possible association between *Toxoplasma gondii* infection and risk of anxiety and cognitive disorders in BALB/c mice

Hossein Mahmoudvand¹, Naser Ziaali², Iraj Aghaei³, Vahid Sheibani⁴, Saeideh Shojaee⁵, Hossein Keshavarz⁵, Mohammad Shabani⁶

¹Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran, ²Department of Medical Parasitology and Mycology, Kerman University of Medical Sciences, Kerman, Iran, ³Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran, ⁴Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran, ⁵Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

There are conflicting reports concerning the association of *Toxoplasma gondii* infection with increased risk of mental disorders. This investigation will provide a good understanding about defining the possible association between *T. gondii* exposure and risk of anxiety and cognitive alterations. Besides, a secondary objective of this study was to determine the effect of pioglitazone administration on the possible alterations induced by *T. gondii* exposure. Male BALB/c mice were used for this study. The animal model of *Toxoplasma* infection was established by the intraperitoneal inoculation of 20–25 tissue cysts from Tehran strain of *T. gondii*. Pioglitazone (20 mg/kg, i.p.1/day) was administered to the animals for 2 weeks before behavioural tests. Behavioural tests including open-field, elevated plus-maze and passive avoidance learning were evaluated in the groups. Since cytokines were implicated as a contributing factor for mood disorders, the mRNA levels of TNF-α, IL-1β, IL-6 as well as inducible nitric oxide synthase (iNOS) were examined by real-time PCR. Findings demonstrated that *T. gondii* caused anxiety-like symptoms and impaired cognitive functions of the infected BALB/c mice, whereas pioglitazone, a peroxisome proliferator-activated receptor agonist, showed a promising effect against the cognitive impairments induced by *Toxoplasma* infection. The results also revealed that the mRNA levels of the aforementioned cytokines were significantly (*p* < 0.05) increased in the infected mice compared to the uninfected BALB/c ones. Pioglitazone can be offered as a potential neuroprotective agent in the treatment of patients with *T. gondii* infection that manifests anxiety and cognitive impairments; however, further studies are needed to clarify the exact mechanisms.

Keywords: *Toxoplasma gondii*, Pioglitazone, Anxiety, Cognitive function, Learning, Cytokine

Introduction

Toxoplasma gondii is a ubiquitous obligatory intracellular coccidian protozoan organism found throughout the world that infects a wide range of warm-blooded animals and approximately one-third of the world’s human population.¹ Humans can be typically infected through three main routes of transmission: (i) ingestion of tissue cysts in raw or undercooked infected meat, (ii) ingestion of food or water contaminated with sporulated oocysts shed in the faeces of an infected cat and (iii) congenitally, vertical transmission from mother to foetus across the placenta when she is infected through one of the above two routes during pregnancy.¹ The clinical spectrum of *T. gondii* infections varies from asymptomatic to serious illnesses, affecting lymph nodes, eyes and central nervous system.²

The statistics reported regarding the prevalence of psychological disorders in Iran and other countries around the world has shown the necessity of paying more attention to mental health. According to World Health Organization (WHO), almost 450 million individuals suffer from one of the types of psychological disorders, half of who suffer from depression and anxiety.³ Anxiety is one of the most frequent diseases among all other psychiatric disorders. Knowledge of disease-specific and non-specific risk
factors facilitates the early identification of people at risk, which is important for further treatments. So far, several studies have established a genetic contribution to these mental disorders. Mapping of direct paths from gene to mental disorders has been slow and inconsistent, since only a few genome-wide association studies have detected risk genes, and many putative gene findings have failed to replicate. However, a large proportion of variation in mental health remains unexplained by genetic factors. Thus, these factors are rendered to the discovery of new risk factors for mental disorders.

With respect to T. gondii infection as a possible cause of some mental disorders such as schizophrenia and mood disorders, many works have focused on a large number of epidemiological and serological studies, which have demonstrated association between T. gondii infection and these neuropsychiatric diseases. For example, Markovitz et al. (2014) reported that T. gondii infection may play a role in the development of generalized anxiety disorder (GAD). To allow further evaluation of the potential association between T. gondii infection and anxiety disorders, we established a mouse model of acquired T. gondii infection. Then, we investigated the relative clinical symptom of anxiety to find some useful information by these mice models.

Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR), is originally used for diabetes mellitus type two; but, due to the presence of neuroprotective properties, it is also used in various diseases including Parkinson’s disease, traumatic brain injury, ischaemia, spinal cord injury and Huntington’s disease. Furthermore, Kemp et al. (2014) reported that pioglitazone as a modulator of mood can reduce the severity of bipolar depression symptom and modulate mood. This proof-of-concept study tested whether administration of a PPARs- agonist could reduce cognitive impairments and anxiety symptom severity induced by T. gondii infection. Therefore, as a second objective, this study aims to explore the potential role of pioglitazone against anxiety-like conditions in a mice model with T. gondii infection.

Materials and Methods
Ethical statement
This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (Publication No. 85-23, revised 1985). The protocol was approved by the Committee on the Ethics of Animal Experiments of the Kerman University of Medical Science (Permit Number: 1508). Moreover, all efforts were made to minimize suffering.

Animals
Forty male BALB/c mice (6–8 weeks old) weighing from 18 to 20 g were obtained from the Animal Breeding Stock Facility of Razi Institute of Iran (Karaj, Iran). Animals were housed in a colony room with a 12:12 h light/dark cycle at 21 ± 2 °C and were handled according to standard protocols for the use of laboratory animals.

Parasite
The Tehran strain of T. gondii, which was kindly provided by Prof. Keshavarz of Tehran University of Medical Sciences (Tehran, Iran), was used throughout the experiment. It was maintained by intraperitoneal inoculation of cysts (15–20 cysts) from brain tissue of infected BALB/c mice after 3 months. Cysts for the infection of BALB/c mice were isolated from the brain tissue of infected mice, and the number of cysts was counted under a microscopy with a 10 × objective.

Animal model of Toxoplasma infection
In this study, the animal model of Toxoplasma infection was established as described previously elsewhere. To do this, 0.5 mL of the brain suspension containing 20–25 tissue cysts was inoculated intraperitoneally to each of 10 male BALB/c mice. After 2 months, all the mice were tested for anti-T. gondii antibodies by serological tests.

Serological tests
In order to confirm Toxoplasma infection in tested mice, collected serum samples were examined for anti-T. gondii IgG antibody via the modified agglutination test (MAT) using a commercial kit (Toxoscreen DA, Biom’erieux, Lyon, France) in accordance with the manufacturer’s instructions, and starting at a 1/20 dilution. Sera showing an agglutination titre of 1/20 or higher were considered positive and were end-titrated using 2-fold dilutions.

Experimental design
Forty male BALB/c mice were randomly allocated to four experimental groups (n = 10 per group) for the behavioural assays. The groups were uninfected (control), T. gondii infection (TG), T. gondii + pioglitazone (TG + pio) (20 mg/kg, i.p. 1/day) and control + pioglitazone (control + pio). Pioglitazone hydrochloride (Sigma–Aldrich, USA) was dissolved in saline and administered intraperitoneally to the animals for 2 weeks before the behavioural tests.

Behavioural tests
Three months post infection, the behavioural experiments were performed by trained observers who were blind to experimental conditions. The experiments were performed between 8:00 am and 3:00 pm.

Open-field test
At first, mice were brought to the laboratory 2 h after last pioglitazone injection. Mice were put in the middle of open-field. The open-field apparatus was made of a square arena (90 × 90 × 30 [H] cm) which was made of Plexiglas; its floor was divided into 16 squares, so the field was divided into central and peripheral squares. The vertical and horizontal
activities of the mice were recorded during a 5-min period and then were analysed using an EthoVision software (version 7.1), a video tracking software for automation of the behavioural paradigms (Noldus Information Technology, the Netherlands). The following parameters were recorded for each animal: total distance moved (TDM, cm), number of grooming and rearing (as a measure of vertical activity) and the time spent in periphery and centre. At the end of each test, animals were removed from the chamber and the field was cleaned using damp cloth.12

Elevated plus-maze

The elevated plus-maze comprised a black wooden apparatus with arms having equal dimensions. Two of its arms were enclosed by walls (30 × 15 × 5 cm) and arranged in line with 2 opposite open arms (30 × 5 cm). The maze was elevated 50 cm above the floor. The mice were placed in the centre of the maze, facing the open arms. Two 100 W lamps brightly illuminated the arena. The mice were allowed to explore the maze, and their behaviour was monitored for 10 min using an EthoVision software (version 7.1), a video tracking software for automation of the behavioural paradigms (Noldus Information Technology, the Netherlands). After each test, the apparatus was cleaned with 70% ethanol to eliminate the remaining odours. The time spent in the open arms, the number of entries into the open arms and the total number of entries into the arms were recorded.12

Passive avoidance learning

The learning ability of each mouse was evaluated by passive avoidance (PA) learning test, which was described previously elsewhere.19 Briefly, a shuttle-box device with dimensions of 100 × 25 × 25 which consisted two parts was used. First, animals were placed in the light arena of the shuttle-box apparatus. Then, the door was opened and the animal was allowed to go to the dark sector. Finally, the door was closed without electric shock and the animal was allowed to go to the dark sector. Finally, the door was opened and the time required to enter the dark sector was recorded as retention time (step through latency [STL]). Time in dark compartment (TDC) and number of entrance into dark sector were recorded as indicators of contextual memory.

Analysis of mRNA expression by real-time PCR

Since cytokines, signalling molecules of the immune system, have been implicated as a contributing factor for mood disorders, the mRNA levels of TNF-α, IL-1β, IL-6, as well as inducible nitric oxide synthase (iNOs) were examined by real-time PCR. Mice were deeply anaesthetized with CO₂ in desicators jars with low pressure flow of CO₂. After decapitation, whole brain tissues were rapidly removed and preserved in pre-cooling preservation tubes, then frozen in liquid nitrogen and stored at −80 °C for the investigation of cytokine expression. Total RNAs from brain tissue samples were isolated using RNeasy kits (QIAGEN, Hilden, Germany); all samples were reverse transcribed using RT premix kit (Intron, Sungnam, Korea) according to the manufacture’s protocol. The resulting complementary DNA (cDNA) was subjected either to conventional PCR amplification or real-time PCR. Real-time PCR was performed using the iQ5 real-time PCR detection system (Bio-Rad, Hercules, CA) and SYBR green to detect amplification products, and the reaction conditions were used as described previously elsewhere.20 Data analysis was performed using iQ™5 optical system software (Bio-Rad). The housekeeping gene encoding β-actin was used as a normalization control. Primer sequences were shown in Table 1.

Statistical analysis

Obtained results are expressed as the mean ± SEM. Data analysis was carried out using SPSS statistical package version 17.0 (SPSS Inc., Chicago, IL, USA). One-way ANOVA with Tukey’s post hoc test was used to assess the differences between experimental groups. In addition, p < 0.05 was considered statistically significant.

Results

Establishment of *T. gondii* infection

MAT showed that all of 20 mice infected with *T. gondii* tissue cysts were seropositive for anti-*T. gondii* IgG antibody with agglutination titres of > 1/20. Figure 1 also
spent in centre ($p < 0.01$; F, ANOVA followed by Tukey’s post hoc) were altered in TG mice compared to those in the control groups (Figure 2(A)-(F)), which indicated anxiety-like behaviours in this group; but velocity did not alter ($p > 0.05$; C, ANOVA followed by Tukey’s post hoc). In TG + piog group, some locomotion and anxiety-like behaviours were significantly (ANOVA followed by Tukey’s post hoc) altered compared with the control group, which included rearing ($p < 0.05$) and mobility ($p < 0.001$); compared with TG group, rearing, time spent in perimeter and centre ($p < 0.05$), and grooming ($p < 0.001$) were altered (Figure 2).

Figure 1 Tissue cysts of *T. gondii* Tehran strain isolated from brain of infected mice. A: periodic acid–Schiff (PAS) stain, B: haematoxylin and eosin staining, gimsa staining, C.

Figure 2 Effect of *T. gondii* and pioglitazone on locomotion and anxiety-like behaviours using with open-field test. *$p < 0.05$, **$p < 0.01$ and ***$p < 0.001$ in comparison with the control groups. †$p < 0.05$ and †††$p < 0.001$ compared with the *T. gondii* group.

shows tissue cysts of *T. gondii* Tehran strain isolated from brain of infected mice.

Effect of *T. gondii* and pioglitazone on locomotion and anxiety-like behaviours

As shown in Figure 2(A)-(F), locomotion and anxiety-like behaviours such as rearing ($p < 0.001$; A, ANOVA followed by Tukey’s post hoc), grooming ($p < 0.01$; B, ANOVA followed by Tukey’s post hoc), mobility ($p < 0.001$; D, ANOVA followed by Tukey’s post hoc), time spent in perimeter ($p < 0.01$; E, ANOVA followed by Tukey’s post hoc) and time spent in centre ($p < 0.01$; F, ANOVA followed by Tukey’s post hoc) were altered in TG mice compared to those in the control groups (Figure 2(A)-(F)), which indicated anxiety-like behaviours in this group; but velocity did not alter ($p > 0.05$; C, ANOVA followed by Tukey’s post hoc). In TG + piog group, some locomotion and anxiety-like behaviours were significantly (ANOVA followed by Tukey’s post hoc) altered compared with the control group, which included rearing ($p < 0.05$) and mobility ($p < 0.001$); compared with TG group, rearing, time spent in perimeter and centre ($p < 0.05$), and grooming ($p < 0.001$) were altered (Figure 2).
Elevated plus-maze

Mice with T. gondii infection showed a significant difference in terms of anxiety behaviours using an elevated plus-maze in comparison with the other groups (p > 0.05, ANOVA followed by Tukey’s post hoc; Figure 3(A)–(D)). T. gondii infection group had a reduced number of entrances into the open arms (p < 0.01, ANOVA followed by Tukey’s post hoc), implicating an increased anxiety-like behaviour in these mice. Treatment with pioglitazone counteracted the effect of T. gondii infection, because the TG + pio mice showed significant enhancement with TG group in the number of entrances into the open arms (p < 0.05, ANOVA followed by Tukey’s post hoc; Figure 3(A)). There was no difference in the number of entries into the closed arms in all the groups (Figure 3(B)), but open/close arm ratio significantly decreased in the TG group compared with the control groups (p < 0.001, ANOVA followed by Tukey’s post hoc). Treatment with pioglitazone counteracted the effect of T. gondii infection, because the TG + pio mice showed significant enhancement compared to the TG group in the open/close arm ratio (p < 0.01, ANOVA followed by Tukey’s post hoc), but no difference was found with the control groups (Figure 3(C)). Furthermore, total distance moved was significantly reduced in the TG group compared with the controls (p < 0.01, ANOVA followed by Tukey’s post hoc); TG + pio group had an increased TDM compared to the TG group, while there was no significant difference between TG + pio and controls or TG group, implicating a protective role for pioglitazone (Figure 3(D)).

Effect of T. gondii infection and pioglitazone treatment on PA learning

As shown in Figure 4(A), TG group received significantly a higher number of shocks compared to the control groups (p < 0.01, ANOVA followed by Tukey’s post hoc), implicating an impaired learning. Treatment with pioglitazone counteracted the effect of T. gondii infection, because the TG + pio mice showed a significant reduction with the TG group in the number of shocks received (p < 0.05, ANOVA followed by Tukey’s post hoc, Figure 4(A)). TG mice demonstrated a significantly decreased STL compared to the control groups (p < 0.05, ANOVA followed by Tukey’s post hoc), indicating an impaired memory function in the PA paradigm. Treatment with pioglitazone partially reversed the effect of TG, because there was no significant difference between TG + pio compared with the TG and control groups (Figure 4(B)). TG mice showed an increased TDC compared with the control groups (p < 0.01, ANOVA followed by Tukey’s post hoc, Figure 4(C)). TG + pio group had a decreased TDC compared to the TG group, while there was no significant difference between TG + pio and control or TG group, implicating a protective role for pioglitazone.

Analysis of mRNA expression

The mRNA levels of TNF-α, IL-1-β, IL-6 and iNOs were examined in T. gondii-infected BALB/c mice by quantitative real-time PCR. The results demonstrated that mRNA levels of TNF-α (p < 0.001), IL-1-β (p < 0.01), IL-6 (p < 0.01) and iNOs (p < 0.01) significantly increased (at least two fold) in infected mice in comparison with the uninfected BALB/c ones (ANOVA followed by Tukey’s post hoc, Figure 5).

Discussion

In this study, Toxoplasma infection caused anxiety-like symptoms and impaired cognitive functions of the infected BALB/c mice, whereas pioglitazone, a PPAR agonist, showed a promising effect against the cognitive
Epidemiological evidence in humans and experimental studies in rodents has shown a number of neurological and behavioural disorders such as learning and memory impairment following the establishment of chronic toxoplasmosis. Skallová et al. (2006) have reported that Toxoplasma tissue cysts in the brain could affect mouse behaviour through changes in the dopaminergic neuromodulatory system. Zhou et al. (2011) have demonstrated that chronic toxoplasmosis induced by T. gondii Prugniaud strain impaired learning and memory functions in Kunming mice. In the other study conducted by Daniels et al. (2015), it has also been reported that latent toxoplasmosis contributes to neurocognitive symptoms especially memory impairment in infected rats. In addition, Hodkova et al. (2007) have shown that the differences between T. gondii-infected and control mice were a result of impaired ability to recognize novel stimuli rather than of impaired learning capacity in animals with latent toxoplasmosis. However, the difference in the reported impacts of T. gondii infection on these impairments can be explained by differences in experimental settings and the strain of T. gondii used. In this study, we investigated the effects of subacute T. gondii infection on learning and memory using a shuttle-box test and the mRNA levels of some cytokines and iNOS in infected BALB/c mice. The results showed that the mRNA levels of TNFα, IL-1β, IL-6, and iNOS were significantly increased in infected mice compared to uninfected mice. These findings suggest that subacute T. gondii infection can lead to learning and memory impairments.
be attributed to rodent species, route of infection, parasite strain and dosage.26,27

Despite compelling evidence that *T. gondii* infection profoundly affects the manner in which rodents perceive and respond to stressful stimuli, only few studies have shown the possible relationship between *T. gondii* infection and human anxiety. They have found that *Toxoplasma* antibodies are significantly higher in anxiety disorders.11,28 However, mechanisms by which *T. gondii* infection alters the host behaviour are not well understood, but neuro-anatomical cyst presence and the localized host immune response to cysts are the potential candidates.29 Previously, Evanse et al. (2014) reported that, while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization can explain individual variation in the effects of *T. gondii* on behavioural test.29 However, recent studies have demonstrated that cysts may preferentially persist and increase in number in limbic regions known to mediate anxiety, including the amygdala and hypothalamus.26–28

Our results also demonstrated a protective role for pioglitazone on anxiety and cognitive alterations induced by *T. gondii* in BALB/c mice. In the study conducted by Zeinoddini et al. (2015) on the safety and efficacy of pioglitazone in the patients with bipolar depression, it was proven that pioglitazone could be a tolerable and effective adjunctive therapy for improving depressive symptoms in bipolar disorder without type 2 diabetes or metabolic syndrome.30 In addition, Kemp et al. (2014) reported that open-label administration of the PPAR-γ agonist pioglitazone was associated with improvement in depressive symptoms and reduced cardio-metabolic risk.16 Kumar et al. (2010) have shown that 3 weeks of pioglitazone (5 and 10 mg/kg) pretreatment significantly attenuated the chronic fatigue-like condition as compared to the one in the control (chronic fatigue) animals.31 Although the exact mode of action of PIO in the improvement of these symptoms is poorly understood, recent studies have indicated that PIO may act in several ways: (i) attenuating oxidative damage (decreased lipid peroxidation, nitrite concentration, restored reduction in glutathione and catalase levels), (ii) altering mitochondrial enzymes’ complex (I, II and IV) activities and mitochondrial redox activity and (iii) reducing inflammation modulates mood.12,13 It has been previously proven that cytokines, signalling molecules of the immune system through the neuroendocrine and central neurochemical changes, have been implicated as a contributing factor for mood disorders such as depression and anxiety.32 Moreover, the evidence has supported that, in humans and animals, exposure to cytokines induces depressive-like mood and behavioural alterations.32,33

Among cytokines, IL1, IL6, TNF-α, also iNOS are the most common ones related to anxiety and depression disorders.28 Reviews have been proven that *T. gondii* elicit robust innate and TH, adaptive immune responses in the CNS, where the expression of inflammatory cytokines and mediators such as TNF-α, IL-6, IL-1 and NO has both protective and pathological effects. While vital for restricting parasite replication and spread, inflammatory responses can cause bystander injury of uninfected neurons and can additionally influence neurotransmitter functions and synaptic transmission.34–38 Consistent with previous studies, we found that the mRNA levels of these cytokines significantly (*p* < 0.05) increased in infected mice compared with the uninfected ones. Thus, it could be suggested that chronic *T. gondii* infection communication among immune cells promotes neuroinflammation through cytokine networks and induce anxiety-like symptoms in the BALB/c mice brain; whereas pioglitazone, a PPAR agonist, showed a promising effect against the cognitive impairments induced by *Toxoplasma* infection.

Conclusion

The obtained findings demonstrated that *T. gondii* infection caused anxiety-like symptoms and impaired cognitive functions in BALB/c mice; also, some of these impairments were reversible by pioglitazone as a PPAR agonist. Previously, neuroprotective effects of pioglitazone have been proven. However, further investigations are required to evaluate the effect of different dosages and durations of pioglitazone treatment on cognitive impairments induced by *T. gondii* infection and to elucidate the possible underlying mechanisms.

References

18 shining and memory in rats. Parasitol Int. 2015;64(1):5–12.
38 Saito K, Markey SP, Heyes MP. Chronic effects of γ-interferon on quinolinic acid and indoleamine-2,3-dioxygenase in brain of C57BL/6 mice. Brain Res. 1991;546:151–154.