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A B S T R A C T

Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein
subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of
assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial
vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of
foreign epitopes to the immune system and have been used to develop vaccines against, for example,
influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are
capable of providing correct post-translational modifications and reducing upstream production costs.
The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of
vaccine production. This review investigates the application of plant-based HBc VLP as a platform for
vaccine production.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Due to the establishment of health organizations around the
world, the level of health and well-being of people has increased in
recent years. The mortality rate of infectious diseases has fallen and
average life expectancy has increased. However, infectious diseases
are still a major health concern of the World Health Organization
(WHO) and other related organizations. In the 21 st century, various
epidemics have been responsible for many deaths globally [1]. In
recent years, the WHO has faced emerging dangerous viral diseases
including SARS in 2002–2003, Influenza in 2009, MERS in 2012,
Chikungunya in 2013, Ebola in 2014–2016, Zika in 2015-present, and
SARS-CoV-2 (Covid-19) that has been recently (December 2019)
identified in China has been declared a pandemic [2,3]. Therefore, in
the case of epidemics, it is essential that a vaccine against the target
pathogen be rapidly developed in large quantities. Traditionally
vaccines have been composed of either live-attenuated or inacti-
vated pathogens. These vaccines are efficacious but carry the risk of
reversion to virulence. As an alternative, recombinant subunit

vaccines, including virus-like particles (VLPs), are a new generation
of vaccines that are not only safe but can also be rapidly produced in
heterologous expression systems.

VLPs are essentially composed of structural proteins without
incorporation of a genomic component and are thus non-
infectious. A number of VLP-based vaccines against, for example,
Hepatitis B virus and human papillomavirus are commercially
available. The selection of an appropriate expression host is of
crucial importance for such VLP-based vaccines [4,5]. Recombinant
proteins used as biopharmaceuticals are complex molecules and
thus require an appropriate host to attain the desired biological
function. Factors that should be considered for the selection of an
expression system include the correct folding and appropriate
post-translational modifications of the protein, protein expression
level and safety, contamination with endogenous agents, scalabili-
ty, and production and maintenance costs. Recent advances in the
development of expression systems have made it easier to select an
appropriate system. Bacterial, yeast, insect, mammalian and plant
expression systems all have specific advantages, as well as
disadvantages, that need to be taken into account when selecting
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odifications and there is also the possibility of endotoxin and
cetate accumulation, which cause detrimental effects on cell
ulture [6,7]. In insect cells, protein expression levels are often low
nd sites with potential N-linked glycosylation are often either
lycosylated or not glycosylated, differing from glycosylation
atterns in mammalian cells [8,9]. Although mammalian cells offer
orrect post-translational modification and protein folding, are
calable and yield adequate amounts of protein, limitations of this
xpression system include high costs of production, purification,
nd maintenance as well as safety issues with the possible
ontamination with endogenous pathogens. Due to an increased
emand for large quantities of high-quality pharmaceuticals and
iagnostic proteins in a limited amount of time and at low cost, the
lant expression system is a suitable alternative with high
otential in the production of recombinant vaccines and antibodies
10,11].

. VLP-based vaccines

There are many types of biological and chemical agents for the
revention or control of disease, including monoclonal and
olyclonal antibodies, peptides, small-molecule drugs, oligonucle-
tide-based therapeutics, interferons, and vaccines [12–14]. From
he 18th century to the present time, great changes have taken
lace in the process of making vaccines. Vaccination has
ndoubtedly been one of the most successful and cost-effective
ealth interventions, preventing the deaths of millions of people
hroughout the world every year. Most commercial vaccines are
illed or live attenuated disease agents that induce immunity.
owever, one of the most critical problems of these vaccines is the
ossibility of reverting to virulence. New biotechnology and
enetic engineering techniques have recently provided a viable,
fficacious and, cost-effective alternative to these traditional
accines. VLPs have been demonstrated to be safe, highly
mmunogenic and represent a promising new approach to vaccine
evelopment [15–19]. VLP vaccines were first developed in the
arly 1980s with the assembly of HBV VLPs in the yeast expression
ystem [20]. A number of commercially available VLP-based
accines are listed in Table 1 and include influenza [21] and
epatitis A vaccines [22]. VLP-based vaccines have all the
haracteristics of traditional vaccines capable of eliciting powerful
nd rapid cellular and humoral immune response [4] without the
bility to replicate and cause disease. This is likely due to the
reservation of the symmetrical size, shape, and structures of the
nfectious virus in the VLPs [23,24].

VLPs are regular nanometer-scale protein units with spontane-
ous assembly capability [25,26]. They are observed in a variety of
viruses due to their size (22–150 nm). The structural proteins of
VLPs spontaneously assemble after expression in recombinant
systems [27,28]. These particles are often observed in the form of
icosahedron or rod-like structures [29] and due to the absence of
nucleic acid, they are non-replicating and not infectious [4]. There
is thus no possibility of any genetic events occurring such as
insertion, recombination, reversion, or re-assortment and there-
fore VLPs are generally considered safe. VLP vaccines, although
viral in origin, have thus far not caused any serious side effects in
inoculated individuals bar some classic mild adverse effects, such
as local pain at the site of injection. These vaccines also have fewer
side effects when compared to some other vaccines on the market.
[18,30,31]. Another advantage of VLPs is that they are stable
nanoparticles that can be utilized for the delivery of antigens or
drugs [4,32,33]. There is also some evidence that the VLPs are less
reliant on cold chains for storage and transportation [34,35].
Table 2 details VLP vaccine candidates undergoing preclinical or
clinical trials (Table 3).

3. The immune response to VLPs

VLPs can induce both cellular and humoral immunity without
the need for adjuvants [34]. They are able to trigger a potent T cell
response [36–43].VLPs are absorbed by a variety of cells, including
dendritic cells (DCs), due to their very small size, which is between
20�300 nm. It has been shown that adding sequences such as CpG
can promote DC stimulation [44]. The internalization of VLPs by
antigen-presenting cells (APCs) and subsequent presentation to
CD8 + T cells on the MHC class I prompts cell activation, resulting in
the induction of a potent immune response [42,45–47]. In addition,
VLPs often display different pathogen-associated molecular
patterns (PAMPs) that are recognized by pattern recognition
receptors (PRRs) [23,48–51]. PAMPs induce immune responses
through interaction with PRRs like Toll-like receptors (TLRs) on
sentinel cells [23]. Furthermore, it is possible to insert several
types of epitopes into the VLP at the same time using genetic
engineering [44,52–54], which causes crosslinking between B cell
receptors (BCR) leading to B cell activation [34,55]. Epitopes are
also able to trigger a B-cell response [56]. Due to their repetitive
and small structures, VLPs can prime the B cell for activation, i.e.,
multiplication and antibody production [57]. In this case, the
antigens bound to MHC class II on the surface of APC interact with T
helper cells eliciting IgG production and provide signals required

able 1
ommercial VLP-based vaccines and their characterizations.

Vaccine Name Pathogen Antigen Expression System Company Reference

Gardasil HPV1 L1 protein 6,111,618 Yeast (S. cerevisiae) Merck [164]
Cervarix HPV L1 protein 1618 Insect/baculovirus GSK [165,166]
GenHevac B HBV PreS1 + 2 and HBsAg Mammalian (CHO cells) Pasteur-Merieux Aventis [167]
Bio-Hep-B HBV HBsAg Mammalian (CHO cells) BTG (SciGen, FDS Pharma) [168]
DTP-Hep B HBV HBsAg Yeast (P. pastoris) P.T. Bio Farma [169]
Engerix-B HBV HBsAg Yeast (S. cerevisiae) GSK [71,108]
Euvax B HBV HBsAg Yeast (S. cerevisiae) LG Life ScienceS [170]
Gene Vac-B HBV HBsAg Yeast (H. polymorpha) Serum Inst. of India [171]
Heberbiovac HB HBV HBsAg Yeast (P. pastoris) CIGB-Heber Biotec [172]
Hepavax-Gene HBV HBsAg Yeast (H. polymorpha) Crucell [173]
Recombivax HB HBV HBsAg Yeast (S. cerevisiae) MercK [174,175]

Revac-B HBV HBsAg Yeast (P. pastoris) Bharat Biotech [176]
Shanvac-B HBsAg Yeast (P. pastoris) Shantha [177]
Epaxal HAV Inactivated HAV RG-SB Cell-free Crucell [22]
Inflexal V Influenza A (H1N1), A (H3N2), B, HA, NA Cell-free Crucell [21]
Hecolin HEV capsid protein Escherichia coli (Chinese market) Xiamen Innovax Biotech Co [178]

1 Pathogen abbreviations.
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for differentiation of B cells toward memory B cells. VLPs are often
delivered without an adjuvant [57], leading to the production of
high antibody titers [55,58].

4. Engineering VLPs as a vaccine platform

The regular structured VLPs have made it possible to insert and
present heterologous epitopes on the surface of these particulate
structures [16]. HPV16 L1 protein, which self-assembled into VLPs
in plants, has proven highly immunogenic and efficacious for
vaccine production [59]. Also very recently, the use of grapevine

in the last two decades. They were first reported in 1987 as carriers
displaying heterologous epitopes of foot and mouth disease virus.
After the primary study by Clarke et al. in 1987 [65], different
epitopes and antigens have been introduced into HBc protein for
vaccine development (Table 6). The immunogenic epitope of the
virus was fused to the N-terminus end of the HBc sequence [66–
69]. This VLP has been used to produce HBV vaccine in yeast [70,71]
and mammalian cells (CHO) [20]. HBc has been expressed in
various prokaryotic and eukaryotic expression systems
[20,36,42,43,70,72–85]. X-ray crystallography and cryo-electron
microscopy studies on HBc components revealed that these are

Table 2
VLP-based vaccines that were expressed in different expression systems and their research phases.

Vaccine Name Antigen Stage of
development

VLP type Expression
System

Sponsor Reference

Chikungunya Virus Glycoprotein Phase I Chikungunya
Virus -VLP

Baculovirus Jenner Institute, University of Oxford (UK) [25,179]

Ebola virus VP40, glycoprotein Ebola virus-
VLP

Insect cells Animal Cell Technology Unit, IBET (Portugal) [179,180]

Influenza A virus haemagglutinin and
matrix protein

Preclinical trials Influenza A
virus-VLP

Baculovirus Instituto de TecnologiaQuímica e Biológica/
Universidade Nova de Lisboa, (Portugal)

[4,181]

Norovirus NV capsid Clinical trials Norovirus-VLP Escherichia
coli

Jenner Institute, University of Oxford (UK) [25,182]

Norwalk virus Capsid Phase I Norwalk virus-
VLP

Baculovirus Animal Cell Technology Unit, IBET (Portugal) [180,183]

Respiratory
syncytiavirus
(RSV)

G protein Trials in non-human
primates

Alfalfa mosaic
virus-VLP

Nicotiana
tabacum

Cell Biology Department, The Scripps Research
Institute (USA)

[16,184]

Rotavirus SA11 gene Pre-clinical trials
(Animal trials)

Rotavirus-VLP Baculovirus Cell Biology Department, The Scripps Research
Institute (USA)

[16,185]

SARS-CoV-2 Spike glycoproteins Phase I CoVLP Nicotiana
benthamiana

Medicago, Quebec, QC, Canada [186]

Influenza H1N1 phase 3 trial QVLP Nicotiana
benthamiana

Medicago, Quebec, QC, Canada [187]

Table 3
Use of hepatitis B core as a vaccine platform to display epitopes in several expression systems.

Pathogen Epitope(s) Expression system Site of epitope insertion Ref.

Dengue virus cEDIII N. benthamiana MIR [68]
H1N1 Influenza A virus matrix protein 2 E. coli MIR [188]
H7N9 Influenza long alpha-helix (LAH) E. coli MIR [189]
Mycobacterium Tuberculosis (Tuberculosis) Culture filtrate protein 10 (CFP 10) E. coli MIR [190]
– Hepatitis B Core Antigen E. coli MIR [86]

Nicotiana benthamianaGGS sequence
Influenza virus M2e E. coli MIR [191]
Influenza virus M2e N. benthamiana N-terminal [192]
Dengue virus EDIII-2 E. coli MIR [193]
Dengue virus EDIII E. coli MIR [193]
Hepatitis C virus HCc N-terminus E. coli C-terminal [194]
Influenza A M2e E. coli N-terminal [195]
Hepatocellular carcinoma HBV X protein E. coli C-terminal, MIR [196]
Hepatocellular carcinoma AFP1, AFP2 E. coli C-terminal [197]
Hepatitis C virus HCc T-cell epitope E. coli MIR [198]
Foot-and-mouth-disease virus VP1, VP4 N. tabacum, E. coli MIR [199,200]
Hepatitis B virus Pre-S1 E. coli MIR [201]
Hantavirus Nucleocapsid protein E. coli MIR [202]
Hepatitis B virus Pre-S1 E. coli C-terminal [203]
Human Papillomavirus E7 E. coli C-terminal [204]
Theileria annulata SPAG-1 E. coli MIR [205]
Human Immunodeficiency Virus Gag E. coli N-terminal [206]
Human Immunodeficiency Virus Env E. coli C-terminal [90]
Foot-and-mouth-disease virus VP1 E. coli N-terminal [67]
fanleaf virus (GFLV) VLPs has been studied as a new carrier for the
presentation of the HPV L2 epitope [60]. More than 40 years have
passed since VLPs were first obtained from the HBV surface antigen
of HBsAg [40,61]. The HBcAg polypeptide is about 21 kDa in size
and consists of 183–185 amino acid residues that can self-assemble
into 27-nm particles [62–64]. HBc VLPs have been widely studied
3

icosahedral particles [86]. HBc monomers are observed in two
different sizes when packaged as a VLP, consisting of 180 or 240
subunits, and their symmetry is obtained in two forms, T = 3 or
T = 4 [87]. The linear structure of the protein consists of two parts.
Residual amino acids 1–140 comprise the N-terminus region,
which consists of a SA domain required for self-assembly. The C-
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erminus (CTD), is a region (150–183 amino acids) rich in arginine
alled protamine [88]. Gallina et al. in 1989 showed that the
rotamine domain is not related to the particle assembly, but it is
mportant for stabilizing the particles with neighboring disulfide
onds [89]. SA domain has a variable area associated with B-cell
pitopes, while the second CTD and hinge peptide are highly
onserved [78]. The N-terminus in HBcAg is used as an insertion
ite for external epitopes, which enable the insertion of up to 50
mino acids and induce specific antibody responses. Another place
f insertion is the end of the C terminus and in the position of
mino acids 144�127. In the case of the C-terminus, it is possible to
nsert the epitopes at amino acids 144, 149, 153, 163, and 169 [66].
n 1989, Stahl and Murray successfully fused the immunogenic part
f HBsAg of HBV and the envelope of Human Immunodeficiency
irus (HIV) to the C-terminus of HBc sequence [90].
In addition to the N and C termini of the HBc protein, epitopes

ay also be inserted into the Major immunodominant region
MIR) in the e1 loop of the HBcAg protein [13]. Studies have
ndicated that such insertions result in a 10-fold stronger immune
esponse and may be the most efficient site for epitope
resentation [91,92]. The position of the MIR region is located
etween the amino acids 82–88 and at the tip of the α-coil [77].
our cysteines exist in the HBcAg sequence located at 48, 61, 107,
nd 183 positions. Disulfide bonding between two monomers to
reate a dimer usually takes place between cys 61 and sometimes
ys 48 of adjacent monomers [86]. The icosahedral VLPs are
ormed by the association of 180 (90 dimers; T = 3) or 240 (120
imers; T = 4) copies of HBcAg proteins. VLPs with 180 HBcAg
opies are about 30 nm, while those with 240 copies are
pproximately 34 nm in diameter [93]. The dimer consists of
our-helix bundles connected by loops that form spikes on the
uter surface of VLPs. The amino acid residues 76–82 of each
BcAg monomer known as MIR or c/e1 loop, are placed at the tip of
he spike after VLP assembly. Therefore, after inserting an epitope
nto the MIR or C- or N-termini regions of an HBcAg monomer, HBc
LPs can self-assemble following the expression of the monomeric
orm [68,69,92]. HBc VLPs was one of the first VLPs produced in the
lant system through transient expression technology [76]
ecently, Peyret et al. 2015, have introduced a system called the
andem Core’, which is shown in Fig. 1, and which has advantages
ver the previous system including the reduction of steric clashes

due to the non-random association of subunits, flexibility in
inserting a wide range of epitopes, and flexibility to insert larger
epitopes. It has been shown that inserting large or hydrophobic
sequences in the MIR region can reduce antigenicity and
immunogenicity [77]. One way to overcome this problem is to
create a mosaic VLP so that HBcAg proteins with large insertions in
their MIR area are co-expressed with wild-type HBcAg [94].
Another solution is to use a ‘Split Core’ and insert an antigen into
the N- and C-termini regions [86] thus creating a dimer protein.
Particles have high inherent antigenicity due to their spiky and
repetitive structures that allow the presentation of antigens on
their surface [78,95]. Because of its polymeric nature and the
presence of a large number of T-cell epitopes, HBc protein has high
immunogenicity [95]. HBc protein exists in two forms, T-cell-
dependent and T-cell-independent. They can activate macro-
phages, and high antibody production [96–99]. HBc, as a potent T
cell epitope, can stimulate Toll-like receptors [100,101]. These
antigens can act as T-cell and B-cell epitopes and induce
immunogenicity [102–104]. HBc VLPs are very immunogenic in
laboratory models such as mice and no cytotoxic effects have been
reported in humans. [69]. Recently HBc was suggested as a new
platform against SARS-CoV-2 by exposing immunogenic epitopes
[105].

5. Expression systems used for VLP-based vaccine production

Despite the commercialization of several VLP-based vaccines,
the current bacterial, yeast, insect and mammalian cell expression
systems suffer from various limitations [106–108]. As the selection
of a suitable expression system results in increased vaccine
efficacy, scalability, and performance, and can affect the produc-
tion costs, it is important that the advantages and disadvantages of
each system be weighed for each particular vaccine candidate. A
comparison of the differences between the available expression
systems is given in Table 4. Bacteria are the most commonly used
expression system for the production of recombinant proteins, and
30 % of the VLPs described are produced in the bacteria [109].
Interestingly, despite the high number of VLPs produced in E. coli,
no VLP derived from this bacterium has yet been commercialized.
The main concerns are the inability of prokaryotes to perform post-
translational modifications and the complexity of protein
ig. 1. Illustration of the Tandem Core technology concept. The image shows two HBcAg genetically fused to one another via a flexible linker. MIR: Major immunodominant
egion.
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purification owing to the significant differences between the
eukaryotes and the prokaryotes [110–112]. Yeast, insect and
mammalian cells have also been extensively utilized in the
production of VLPs [113,114]. Yeast expression systems are the
most utilized in recombinant vaccine production due to the
relative ease of genetic manipulation and their rapid growth. Yeast
cells are most effective in producing non-enveloped VLPs and also
make the study of complex VLPs possible [106,115,116]. However,
the glycosylation capacity of yeast cells is limited [117]. Other
disadvantages of the yeast expression system include low yield,
low plasmid stability, and low secretion capacity [118,119]. In the
case of insect cells, post-translational changes can be accompanied
by high levels of sugars resulting in hyper glycosylation, which
affects the effectiveness of the vaccine and increases the cost [120–
123]. Furthermore, protein expression in both bacterial and yeast
systems is lower than in plants [124]. There are some disadvan-
tages in using of insect expression system including the possibility
of contamination of insect cell cultures, different post-translation-
al modifications and proteolysis cleavage in areas rich in Lysine and
Arginine. Mammalian expression systems have advantages such as
correct post-translational modifications, correct protein folding
and are free of bacterial endotoxins. However, the need for special
fermentation devices, time-consuming cell preparation, slow

6. Plants as expression systems for VLP-based vaccine
production

Over the last two decades, plants have been increasingly used as
a production host for recombinant proteins. Plant expression
systems are characterized by a high yield of proteins, ease of
protein purification and faster recombinant protein production
[126–129]. A major advantage of the plant expression systems is
their ability to produce large amounts of recombinant protein in a
fast and cost-effective manner [130–132]. Whole plants can be
grown in large quantities in greenhouses without requiring
bioreactor-based fermentation methods [133]. In plants, it is only
necessary to increase the area under plant cultivation to increase
antigen production [124]. Plants have a short growth cycle and
mature quickly, thus reducing the production costs compared to
other systems. Hiatt et al., in 1989 produced the first monoclonal
antibody (mAb) in the transgenic tobacco plant [134]. Examples of
VLP-based vaccines produced in plant expression systems include
those against Influenza and foot-and-mouth diseases [135–138].
Plant virus nanoparticles have also been used as carrier particles
for drug delivery and imaging [139]. Although the glycosylation
patterns in plants are slightly different from those of mammalian
cells [65,140], plant-expressed H5N1 influenza virus-like particles

Table 4
Comparison of different expression systems for the generation of pharmaceutical proteins.

Disadvantages Advantages Production
method

U Lack glycosylation.
U Endotoxins
U Low Protein folding accuracy and export
U Product size limitations
U May require protein-specific optimization

U Ease of expression
U Ability to scale-up
U Low production cost
U Low maintenance costs
U Simplicity of genetic manipulation

E. coli

U Non-appropriate protein glycosylation.
U Risk of incorrect folding & assembly
U Medium protein folding accuracy
U Fermentation require for very high yield

U Ease of expression
U Ability to scale-up
U Low production cost
U Low maintenance costs
U Eukaryotic protein processing

Yeast

U High mannose glycoprotein modification
U Difficulty eliminating pollution caused by baculovirus
U Unsought posttranslational modifications
U Low yields compared to the bacterial and yeast systems

U Produce large amounts of VLP in high density cell culture conditions.
U Minimal risk of opportunistic pathogens
U Establish a stronger immune response through the cellular components

of baculoviruses
U Average maintenance cost
U High protein folding accuracy
U Similar mammalian protein processing

Insect cells

U Higher production cost
U Lower productivities
U Heterologous output
U High risk of human/ /animal pathogen
U Prolonged production efficiency

U Producer cells more closely related to the natural host
U Appropriate PTMs and authentic assembly of VLP
U High maintenance costs
U High protein folding accuracy
U High yields

Mammalian
cells

U Low expression levels (transient expression systems
showed high expression levels)

U Ease of expression
U Ability to scale-up
U Low production cost
U Low maintenance costs
U High protein folding accuracy
U Optimal growth stages
U Lack of pathogenic risk in humans
U Good secretion
U stability of product

Plants
growth, the possibility of contamination with endogenous
pathogens, and high production and maintenance costs limit its
use in many countries, especially developing countries [125].
Plants are considered a cost-effective, scalable, efficient, and safe
alternative to the current mainstream expression systems for the
production of VLP-based vaccines.
5

have demonstrated safety in Phase II clinical trials [141,142] and
plant-made pharmaceuticals are aggressively being investigated,
most recently against the Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). A phase 1 trial of a VLP-based vaccine
against SARS-CoV-2, transiently expressed in plants, was recently
conducted by Medicago [143]. In plants, there is also no need to
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able 5
lant-derived vaccines and their clinical trial phase.

Target Interventions? Plant Host Study Type Study Completion Date Sponsor

Malaria Pfs25 VLP- FhCMB N. benthamiana Interventional
(Clinical Trial: Phase 1)
(NCT02013687)

January 2015 Fraunhofer, Center for
Molecular Biotechnology

Anthrax PA83-FhCMB N. benthamiana Interventional
(Clinical Trial: Phase 1)
(NCT02239172)

May 2015 Fraunhofer, Center for
Molecular Biotechnology

Influenza A
Subtype H5N1
Infection

H5-VLP + GLA-AF;
Licensed H5N1 vaccine

N. benthamiana Interventional
(Clinical Trial: Phase 1)
(NCT01657929)

January 2014 IDRI

H5N1 Flu HAI-05 Influenza
Vaccine; Saline

N. benthamiana Interventional
(Clinical Trial: Phase 1)
(NCT01250795)

July 2011 Fraunhofer, Center for
Molecular Biotechnology

2018�2019
influenza
season

Quadrivalent
VLP Vaccine

N. benthamiana Interventional
(Clinical Trial: Phase 3)
(NCT03739112)

June 14, 2019 Medicago

H1N1 Flu HAC1 Vaccine N. benthamiana Interventional
(Clinical Trial: Phase 1)
(NCT01177202)

October 2012 Fraunhofer, Center for
Molecular Biotechnology

H1N1 Flu Quadrivalent
VLP Vaccine; Placebo

N. benthamiana Interventional
(Clinical Trial: Phase 3)
(NCT03301051)

June 2018 Medicago

H1N1 Flu H1N1 VLP vaccine N. benthamiana Interventional
(Clinical Trial; phas 1)
(NCT01302990)

July 2011 Medicago

H5N1 Flu H5N1 VLP vaccine N. benthamiana Interventional
(Clinical Trial; Phase 2)
(NCT01991561)

July 2014 Medicago

H7N9 Flu H7N9 VLP vaccine N. benthamiana Interventional
(Clinical Trial; Phase 1)
(NCT02022163)

September 2014 Medicago

Lymphoma, Follicular Autologous
FL vaccine

N. benthamiana Interventional
(Clinical Trial; Phase 1)
(NCT01022255)

October 2013 Icon Genetics GmbH

HIV Infection P2G12 N. tabacum Interventional
(Clinical Trial; Phase 1)
(NCT02923999)

August 2020 St George's, University
of London

able 6
LP-based vaccines produced in plants.

Application Antigen Production Plant Study Phase Sponsor Reference

Bluetongue VP3,VP7, VP5
and VP2 protein

N. benthamiana Pre-clinical Department of Biological Chemistry,
John Innes Centre, Norwich, UK

[207]

Foot-and-mouth disease Structural proteins
(VP0, VP1 and VP3)

N. benthamiana Research Institute of Infectious Disease and
Molecular Medicine (South Africa)

[208]

Hepatitis B HBsAg Tobacco Phase I Biodesign Institute at Arizona State University (USA) [209]
Hepatitis B HBsAg Lettuce Phase I Institute of Biotechnology and Antibiotics (Poland) [210,211]
Hepatitis B Glycol protein Spinach Phase I Institute of Biotechnology and Antibiotics (Poland) [212]
HIV Pr55 gag protein Tobacco Research Institute of Plant Genetics (Italy) [213]
HBV-HIV env and gag proteins Tomato Research State Research Center of Virology and

Biotechnology Vector (Russia)
[214]

HPV 16 L1 Nicotiana tabacum Research Department of Molecular and
Cell Biology (South Africa)

[215]

Influenza HA(H5N1) N. benthamiana Phase I/II Medicago (Canada) [216,217]
Influenza HA(H1N1) N. benthamiana Phase I Medicago (Canada) [218]
Influenza HA(H5N1) N. tabacum Phase II Infectious Disease Research Institute,

Seattle, WA (USA)
[142]

Influenza H5N1 N. benthamiana Research Department of Research & Development,
Haukeland University Hospital, Bergen, (Norway)

[219]

Malaria Pfs25-CP N.Tobacco Phase I Center for Molecular Biotechnology, Plymouth, MI(USA) [220]
Noroviruses NaVCP N. benthamiana Research Center for Infectious Diseases and Vaccinology (USA) [221]
Norwalk Capsid protein Potato and tobacco Phase I University of Maryland (USA) [222]
Norwalk Capsid proteins Tomato Pre-clinical Biodesign Institute and School of Life Sciences (USA) [150]
orry about the contamination of toxins and endogenous
athogens, which usually occur in bacterial and mammalian
ell-based expression systems [144–146]. Unlike prokaryotic
ystems, plants have the same secretory pathway as human cells
147]. Another feature of this expression system is the simplicity of
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storing the recombinant proteins [148,149]. Table 5 shows the list
of vaccines produced in plants.

Although plants such as potatoes, tomatoes, corn, soybeans,
rice, and carrots have been used to study immunogenicity,
particularly that of oral vaccines that trigger the mucosal
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immune response [150–152], Nicotiana benthamiana plants are
the stalwart of plant expression system and offer a number of
advantages, including non-food crop status, high growth rate,
growth in greenhouses that reduces the risk of spread of
contamination, and accessibility of suitable and efficient vectors
for enhanced gene expression [153–156]. As indicated in Table 6,
diverse types of VLPs have been expressed in plants. Expression in
these plants can be either transient, which enables rapid, high-
volume and low-cost production of vaccines [145], or transgenic,
which, although stable, typically yields low levels of expression
compared to the transient expression [157]. The transient
expression makes screening and production of the desired protein
possible in a few days which is particularly important for the
development of vaccines during epidemics. Protein expression is
also limited to the infiltrated tissue preventing the risk of
transfer of foreign genes to the gametes of the plant, thus
inhibiting cross-pollination and spread within an unintended
plant population. Protein production on a large scale can be
accomplished by means of vacuum infiltration of all plant leaves
[158]. Plant cell culture has emerged as an alternative bio-
production system for the production of recombinant pharma-
ceuticals. The recombinant glucocerebrosidase enzyme (Taliglu-
cerase Alfa) that is produced within carrot cells, has been
developed as a plant cell-made pharmaceutical for the treatment
of Gaucher’s disease [159].

In transgenic products, the production of vaccines can be
directed into the cytoplasm, as it has been done in tobacco and
lettuce [160,161]. In a study, the insertion of some epitopes of
T. gondii into a truncated HBcD particle triggered strong
humoral and cellular immune responses [162]. A more immuno-
genic VLP vaccine containing, in addition to HBcAg, the proteins
PreS1 and PreS2, was found to elicit a strong antibody response
[163]. Like VLPs produced in other systems, some plant-derived
VLPs are able to induce protective humoral and cellular immune
responses. Plant-expression systems can produce large
quantities of immunogenic HBcAg [24]. Several recombinant
VLPs, including HBcAg VLPs displaying M2 epitope of influenza A,
yeast transposon Ty VLPs displaying HIV p17/p24 antigens,
and HBcAg VLPs displaying malaria epitopes have been
evaluated. Also, expression and assembly of HBcAg-HPV16 L2
epitope VLPs in tobacco-induced antigen-specific antibody re-
sponse in mice [24].

7. Conclusion

Many virus-like particles have been used in the last three
decades experimentally or commercially for various purposes
such as drug loading and delivery, medical imaging and vaccine
production. Hepatitis B virus (HBV) core particles (HBc) have been
the VLP of choice for commercial vaccine production, not only
against HBV but also against many other viral and non-viral
agents. The HBsAg particle was the first VLP-based vaccine and
today, due to its compatibility with a diverse array of expression
systems, many of these particles are manufactured for commer-
cial purposes. HBc is also one of the most promising VLP
presentation platforms due to its high immunogenicity, its
enhanced presentation to the immune system, and its flexibility
to allow a wide variety of foreign insertions without affecting the
protein self-assembly and VLP function. These features will
increase the versatility and efficiency of this type of vaccine in the
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