Amani, Fatemeh and Allahbakhshian Farsani, Mehdi and Gholami, Mehrdad and Aghamiri, Seyed Mahmoud Reza (2020) The protective effect of oleuropein against radiation-induced cytotoxicity, apoptosis, and genetic damage in cultured human lymphocytes. International Journal of Radiation Biology.
Full text not available from this repository.Abstract
Purpose: The aim of this study was to evaluate the effects of oleuropein radiation protection and to find an effective radioprotector. Materials and Method : Human mononuclear cells were treated with oleuropein at the concentration of 100 μM (optimum concentration), incubated for 24 h, and then exposed to 2 Gy gamma-rays. The anti-radiation effect of oleuropein was assessed by MTT assay, flow cytometry, comet assay, and micronucleus (MN) assay. Results : It was found that pretreatment with oleuropein (25, 50, 75, 100, 200, 400, and 800 nM, and 1, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 125, 150, 175, and 200 µM) significantly increased the percentage of cell viability compared to the irradiated group (p < .001). Moreover, oleuropein treatment with the above concentrations defined without gamma-ray did not show any cytotoxicity effect in human mononuclear cells. The LD50/24h dose was calculated as 2.9 Gy, whereas by 200, 150, 50, and 100 µM oleuropein prior to radiation (1, 2,and 4 Gy), radiation LD50/24h increased to 3.36, 3.54, 3.81, and >4 Gy, in that order. A very noticeable dose-modifying factor (DMF) of 1.16, 1.23, 1.31, and 1.72 was observed for 200, 150, 50, and 100 µM, in order. Therefore, 100 µM of oleuropein was selected as the desirable dose for radio-protection trial, and 2 Gy gamma-rays were used for further research. Human mononuclear cells treatment with oleuropein (100 µM) prior to 2 Gy gamma-rays significantly decreased apoptosis, genomic damage, and MN occurrence in human mononuclear caused by gamma-radiation (p < .001). Furthermore, treatment with oleuropein (100 µM) without radiation did not lead to apoptosis, genotoxicity, or clastogenic effects caused by oleuropein in human mononuclear cells. Conclusion: The results revealed that oleuropein is able to significantly reduce cytotoxicity, apoptosis, genotoxic, and clastogenic effects of gamma-rays.
Item Type: | Article |
---|---|
Subjects: | R Medicine > R Medicine (General) |
Divisions: | Faculty of Medicine, Health and Life Sciences > School of Medicine |
Depositing User: | samira sepahvandy |
Date Deposited: | 16 Dec 2020 13:34 |
Last Modified: | 16 Dec 2020 13:34 |
URI: | http://eprints.lums.ac.ir/id/eprint/2486 |
Actions (login required)
View Item |