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Abstract

Immune checkpoints comprise diverse receptors and ligands including costimulatory and inhibitory molecules, which play
monumental roles in regulating the immune system. Immune checkpoints retain key potentials in maintaining the immune
system homeostasis and hindering the malignancy development and autoimmunity. The expression of inhibitory immune
checkpoints delineates an increase in a plethora of metastatic tumors and the inhibition of these immune checkpoints can
be followed by promising results. On the other hand, the stimulation of costimulatory immune checkpoints can restrain the
metastasis originating from diverse tumors. From the review above, key findings emerged regarding potential functions of
inhibitory and costimulatory immune checkpoints targeting the metastatic cascade and point towards novel potential Achil-

les’ heels of cancer that might be exploited therapeutically in the future.
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Background

Cancer is one of the most meaningful threatening diseases
for human health and despite the endless efforts that took
place during the lasts decades, the number of cancer vic-
tims reaches millions [1]. One of the most important causes
of cancer mortality is metastasis, which is defined as the
movement of cancerous cells from their primary sites toward
other organs [2]. All the tumor cells would not metastasize
because the intrinsic properties of tumor cells and the tumor
microenvironment factors should move toward promoting
the tumor metastasis [3]. The tumor microenvironment is
comprised of a myriad of interactions between immune and
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tumor cells, which eventually, promote the immune system’s
responses against the tumor cells through the regulation of
inhibitory and costimulatory responses [4]. Immune check-
points play substantial roles in self-tolerance as immunity
regulators, which hinder the immune system’s attack against
healthy cells and lower the risk of autoimmunity develop-
ing [5, 6]. T cell responses that play significant roles in the
detection and eliminating of tumor cells are initiated through
the detection of antigens by T cell receptors (TCRs) and
are regulated through the making balance between inhibi-
tory and costimulatory signals or immune checkpoints [7,
8]. Immune checkpoint receptors such as programmed cell
death protein 1 (PD1) inhibit the activities of effector T cells
and tumor cells by expressing these molecules can impede
anti-tumor responses of the immune system [5].

Nowadays, immune checkpoint therapy is placed as a can-
cer therapy besides radiotherapy, chemotherapy, and surgery.
Immune checkpoint inhibitors (ICIs) targeting the regulatory
pathways of T cells to augment anti-tumor responses have
led to remarkable clinical advances and developed a novel
weapon for the elimination of tumors [9]. After the nota-
ble achievements for cancer therapy by the use of blocking
the CTLA-4 and PD-1, which are the first detected immune
checkpoints, a new surge of explorations for cancer therapy
based on the blocking of immune checkpoint ligands and
receptors, was emerged [10]. To date, the U.S. Food and
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Drug Administration (FDA) approves several drugs designed
to target immune checkpoint ligands for cancer treatment.
Despite, an improvement of the global conventional toxic-
ity over the chemotherapeutic agents, ICIs point out novel
immune-mediated adverse events profiles. Some of these
side effects such as endocrine toxicity can be permanent,
and, rarely, life-threatening due to myocarditis, pneumonitis,
colitis, and neurologic events [11].

Immune escape is one of the initial steps of metastasis
and is crucial for diverse steps of metastasis including the
onset of the tumor, dissemination, and survival in the blood-
stream, and eventually reaching new organs. The regulation
of immune checkpoints in the tumor microenvironment plays
a monumental role in the tumor dissemination and immune
escape. TAMs residing in the tumor microenvironment pro-
motes the expression of PDL1 which drives to the suppres-
sion of cytotoxic T lymphocytes (CTLs) in the tumor micro-
environment, this is a mechanism employed frequently to
induce metastasis [12]. Moreover, cytokine formation plays
substantial roles during metastasis through the stimulation of
immune checkpoints. LAG-34 pDCs possess high potentials
in producing IL-6, which suppresses the immune system via
STATS3 signaling and leads to melanoma metastasis [13].
IL-8 is one of the cytokines that its formation is triggered
by inhibitory immune checkpoints such as B7-H3 [14] and
CD73 [15]. IL-8 provokes the expression of integrin aM
on neutrophils that can interact with intercellular adhesion
molecule 1 (ICAM1) expressed by tumor cells and results
in the adherence of tumor cells to the liver sinusoids and the
formation of metastatic foci [16]. The goal of this literature
review is to compare two categories of immune checkpoints
target and their associated immune-landscape impacting
cancer progression.

The potentials of immune checkpoints
during the cancer dissemination

Increased expression of inhibitory immune checkpoints
has been reported frequently and this increase in the tumor
microenvironment stimulates metastasis through varied
mechanisms. For instance, PD-1 expression triggers metas-
tasis through the formation of interferon-gamma (IFN-y),
tumor necrosis factor-alpha (TNF-a), and IL-8 and targeting
the JAK2/Stat3/Slug signaling pathway in pancreatic ductal
adenocarcinoma (PDAC), melanoma, urinary bladder cancer
(UBCQ), and hepatocellular carcinoma (HCC), respectively
[17-20]. CD73 provokes metastasis in cervical cancer and
colorectal cancer (CRC) via VEGF/Akt pathway [21] and
the MAPK/ERK signaling pathway [22], respectively. CD73
expression facilitates the adherence of metastatic cells to
the ECM of the new organ through the LFA1 clustering
and adenosine formation [23]. CD73 promotes metasta-
sis of breast cancer via the expression of EGFR and IL-8
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[15], while, CD73 blockade restrains melanoma metastasis
through the formation of IL-1f and TNF-a [24].

PI3Ky induces metastasis through increasing the forma-
tion of PDGF-BB and improving the expression of MMP-9,
uPA, VEGF, HIF-1a, and HIF-2a in PDAC [25] and mela-
noma [26], respectively. Tim-3 follows diverse approaches
to induce metastasis in different kinds of tumors and plays
a critical role during the initial steps of metastasis. Tim-3
promotes tumor cell infiltration and diffusion through EMT
stimulation [27], GATA3 inhibition [28], and survival in
the bloodstream via anoikis prevention [27]. Moreover,
Tim-3 expression induces metastasis of HCC, ductal breast
carcinoma, prostate cancer, and LAC through promoting
macrophages into the M2-like phenotype [29], IL-6-STAT3
pathway [30], reducing the IFN-y synthesis of peripheral
NK cells [31], and triggering the NF-kB signaling [32],
respectively.

B7-H3 expression plays a crucial role during metastasis
since the expression of this molecule can encourage metas-
tasis through augmenting IL-8 formation and Stat3, upregu-
lation of MMP-2, downregulation of TIMP-1 and TIMP-2
[33], and upregulation of cyclin D1, Stat3, and p-Stat3 [34].
B7-H3 induces its facilitating effects on metastasis of mela-
noma [33], HCC [35], and osteosarcoma [36] via potentia-
tion of MMP-9. The expression of costimulatory immune
checkpoints demonstrates a decline in the tumors associat-
ing with metastasis since the expression of these molecules
can restrict metastasis through potentiating the formation of
IL17A, IFN-y, and TNF-a and enhancing the cytotoxicity of
CD8+T cells, NK cells, and macrophage [37-39]. CD40L
expression impedes metastasis of CRC through the stimula-
tion of NK cells and CTLs and the hindrance of the suppres-
sive effect of Tregs [40, 41]. The expression GITR-L also
hinders melanoma metastasis via augmenting CTLs [42].
CD27 signaling suppresses metastatic RCC via potentiating
CD8+and CD4+ T cells differentiation and enhancing the
expression of HLA-DR and costimulatory markers such as
ICOS, 4-1BB, and CD69 [43]. 4-1BB restricts metastasis
of TNBC, melanoma, and CRC by potentiating CTL [44],
increasing the number of TILs [45], and CD11b+ monocytes
[46], respectively.

Costimulatory immune checkpoints

Costimulatory immune checkpoints expression on the
immune cells leads to the stimulation and activation of these
cells increasing anti-tumor responses (Fig. 1). Tumor cells
stimulate tumorigenesis pathways through the inhibition of
these costimulatory pathways, which summarized in Table 1.
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Fig. 1 Diverse roles of the immune checkpoint in T cell, NK cell,
monocyte, and macrophage, which lead to the stimulation, or inhi-
bition of metastasis. The expression of A2AR, TIM-3, and TIGIT
on NK cells plays a stimulating role during metastasis while CD27
impedes metastasis via the regulation of immune cell activities. The
expression of inhibitory immune checkpoints including CD47, TIM-
3, and PI3Ky on monocyte and macrophages promotes metastasis.

4-1BB

The 4-1BB expression can inhibit metastatic triple-nega-
tive breast cancer (TNBC) cells through augmenting the
activity of cytotoxic T cell and induction of a more differ-
entiated CD8™ T cell gene profile [50]. 4-1BB stimulation
restrains the metastasis of breast cancer through the rever-
sion of tumor-induced CTL tolerance, which will lead to
augmented activity of CTL [55]. It has been indicated that
induced expression of 4-1BB by the administration of ago-
nistic anti-4-1BB mAb restricts the metastasis of B16F10
melanoma cells to the lungs through increasing the popu-
lation of tumor-infiltrating lymphocytes (TIL) including
CD47" T cells, CD8" T cells, and CD11b* TIL in the lung
tumor masses. Moreover, 4-1BB expression increases the
number of CD8" IFN-y* T cell and enhances the expres-
sion of MHC class I and II antigens on B16F10 cells in
response to increased production of IFN-y [45]. The usage
of agonistic anti-4-1BB mAb also suppresses the metasta-
sis of CT26 CRC cells to the liver through expanding the
number of CD11b* monocytes or CD11c" splenic den-
dritic cells (DCs) [46]. 4-1BB cannot induce long-term
survival, while, interleukin 12 (IL-12) can induce long-
term survival in 20-30% of liver metastasis models and
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The stimulation of 4-1BB which is a costimulatory immune check-
point on monocyte can restrict metastasis via increasing the number
of CD11b™ monocyte. T cells expressing inhibitory immune check-
points including CTLA-4, CD73, PI3Ky, LAG-3, PD-1, and TIGIT
stimulate metastasis, however, the expression of costimulatory
immune checkpoints including 4-1BB, CD27, and CD40 on these
cells hinders metastasis

cases of concurrent use of IL-12 and 4-1BBL, long-term
survival will increase by 62% [49].

CD27

Augmenting the signaling pathway of CD27 potentiates the
immune responses such as CD8" and CD4* T cells differ-
entiation and enhances the expression of HLA-DR and the
activation markers on CD4" T cells and restrains metastatic
renal cell carcinoma (RCC) [43]. Induced expression of
CD27 can impede lung metastasis of melanoma. Enhanced
CD27 expression on immune cells such as CD8* and CD4"*
T cells residing in the tumor microenvironment, FoxP3-
expressing CD4" T, and CD3"NK1.17" natural killer (NK)
cells augments the activities of these cells [51].

0X40

0X40 expression increases the possibility of lymph node
metastasis from 78.2 to 92.3% in invasive ductal carcinoma
of the breast [56]. Furthermore, increased expression of
0X40 on TILs has been reported in metastatic cutaneous
squamous cell carcinoma (SCC). There is a large number of
regulatory T cells (Tregs) in the tumor microenvironment of
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Table 1 Key costimulatory immune checkpoints and their functions in the regulation of cancer metastasis

Tumors Immune  Expressing cells Kinds of trials Functions References
check-
points

TNBC 4-1BB T cells Animal testing Augmenting the activity of CTL and induction of more [47]
differentiated CD8™" T cell gene profile

Breast cancer 4-1BB T cells Animal testing Reversing the tumor-induced CTL tolerance, which will ~ [48]
lead to augmented activity of CTL

Melanoma 4-1BB T cells Animal testing Increasing the population of TIL including CD4% T cells, [49]
CD8* IFN-y* T cells, and CD11b* TIL in lung tumor
masses

CRC 4-1BB Monocytes and splenic DCs  Animal testing Expanding the number CD11b" monocytes or CD11¢* [46]
splenic DCs

CRC 4-1BB T cells Animal testing Activating T cells [50]

RCC CD27 T cells Clinical trial ~ Potentiating the immune responses such as CD8* T cells  [43]
and CD4™" T cells differentiation

Melanoma CD27 T cells and NK cells Animal testing Augmenting the activities of immune cells such as CD8*  [51]
and CD4™" T cells residing in the tumor microenviron-
ment, FoxP3-expressing CD4* T, and CD3 - NK1.1*
NK cells

SCC 0X40 T cells Clinical trial ~ Potentiating T cells responses in the presence of [52]
CD3*CD4*CD25"e"CD127"°" Treg population

Melanoma CD40 Melanoma cells Animal testing Enhancing the formation of CD8" T cells cytokines [38]
including, IFN-y, TNF-a, IL-6, IL-13, and GM-CSF

CRC CD40 RCNO cells Animal testing Inducing the antitumor responses of Th1 and hindering [41]

Breast cancer CD40 Endothelial progenitor cells

GITR
GITR

DCs
DCs

Melanoma

Melanoma

Animal testing

Animal testing

Animal testing

of the suppressive effect of Tregs

Promoting the production of TNF-a and INF-y and [53]
caspase 3/7 activity

Improving the responses of CTL [54]

Enhancing the induction of melanoma tumor-associated  [42]
Ag-specific CTL activity

TNBC triple-negative breast cancer; CTL cytotoxic T lymphocyte; CRC colorectal cancer; DCs dendritic cells; RCC renal cell carcinoma; SCC
squamous cell carcinoma; /FN-y interferon-gamma; TNF-a tumor necrosis factor-alpha

SCC, which induce the metastasis through the inhibition of
antitumor responses of T cells. Interestingly, OX40 expres-
sion can potentiate T cells responses while its expression
occurs in the presence of CD3*CD4+CD25MeCD 127!
Treg population [52]. It has been indicated that OX40L:Ig
administration for the treatment of mice suffering from the
tumor-induced by the injection of 4T1 breast cancer cells
possessing high potentials for metastasis can inhibit the
tumor and improves the survival [57].

CD28

CD28-mediated costimulatory pathways play a significant
role during the differentiation of functional tumor-specific
CD8* T-effector cells and CD28 inexpression in patients
suffering from melanoma will result in pulmonary metas-
tases [58]. CD28 expression is declined on metastatic
melanoma cells while its expression shows an increase in
CD4" lymphocytes that are migrating toward tumors [59].
CD28 expression is improved on CD4% and CD8* T cell
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surrounding metastatic melanoma cells and in the expression
of CD28 on T lymphocytes circulating in peripheral blood of
patients suffering from metastatic breast cancer is associated
with poor prognosis [60].

CD40

CD40 expression on melanoma cells stimulates the forma-
tion of CD8 T cell cytokines including IL-13, IL-6, TNF-
a, and granulocyte/macrophage colony-stimulating factor
(GM-CSF) and impedes brain metastasis which is common
among melanoma patients [38]. The systemic injection of
endothelial progenitor cells derived from human induced
pluripotent stem cells expressing CD40 by the use of bac-
ulovirus encoding CD40 ligand inhibits metastasis and
induces prolonged survival through the formation of tumor
necrosis factor-o (TNF-a) and IFN-y in the 4T1 breast can-
cer lung metastasis model [53]. 93 percent of lung tumors
expressing CD40 have nodal or systemic metastasis dur-
ing the initial diagnosis of cancer [61]. CD40 expression
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on esophageal squamous cell carcinoma (ESCC) leads to
the progression of cancer and metastasis to lymph nodes
[62]. It has been demonstrated that the administration of
the anti-CD40 antibody in female BALB/c mice suffering
from mesothelioma inhibits metastasis and improves their
survival [63].

Nitric oxide (NO) production induced by IL-2/a-CD40
combination treatment results in the increased and
decreased expression of E-cadherin and matrix metallo-
proteinase (MMP), respectively in the RCC microenvi-
ronment. Decreased expression of E-cadherin is involved
in the increased probability of metastasis. IL-2/a-CD40
combination therapy has enough potential to induce the
IFN-a— and NO-dependent reduction of MMP9 expres-
sion in the tumor microenvironment and diminishes the
probability of metastasis development to the lung [64]. It
has been demonstrated that induced expression of CD40L
by adenovirus vector-expressing mouse CD40L hampers
metastasis and improves survival in rat metastatic liver
cancer cells. Anti-tumor effects of CD40 have attributed
to its ability in the induction of Th1 anti-tumor responses
and the impeding the suppressive effect of T-regulatory
cells [41].

GITR

GITR (glucocorticoid-induced tumor necrosis factor recep-
tor) expression on CD87 cells of patients suffering from
advanced and metastatic breast cancer is declined in com-
parison to healthy people while its expression demonstrates
a significant increase in CD47 cells [65]. The concurrent
administration of Sunitinib which is a multitargeted tyrosine
kinase inhibitor with the anti (a)-GITR agonist can restrict
the liver metastasis of metastatic RCC through the induc-
tion of activation, proliferation, and enhanced cytotoxic-
ity of CD8* T cells, NK cells, macrophage, and DCs. The
examination of isolated CD8" T cells and NK cells from
Sunitinib/a-GITR-treated mice indicated that these cells
encountered increased production of IFN-y after PMA/
ionomycin stimulation [39]. In this experiment, the tumor
was induced to C57BL/6 (H-2°) mice by the injection of
B16-F10.9 cells, which are an extremely metastatic clone of
the B16-F10 melanoma cell line. The injection of DCs trans-
fected with either anti-GITR mAb mRNA or mRNA encod-
ing soluble GITR-L to these mice resulted in the improved
responses of CTL through the stimulation of GITR pathway
and eventually restrained the metastasis to the lungs [54].
Moreover, the injection of DCs transfected with mRNA
encoding soluble GITR-L fusion protein inhibits meta-
static melanoma through enhanced induction of melanoma
tumor-associated Ag-specific CTL activity in C57BL/6 mice
implanted with B16/F10.9 cells [42].

Inhibitory immune checkpoints

Inhibitory immune checkpoints pathways restrict the activa-
tion of T cells and the duration of immune responses and
regulate the inflammation, toleration, and homeostasis by
employing varied processes (Fig. 2) [66]. Tumors can crip-
ple the immune system by hijacking inhibitory immune
checkpoints, which summarized in Table 2.

Tim-3

Enhanced expression of T cell immunoglobulin and mucin
domain-containing protein 3 (TIM3) potentiates metastasis
in HCC via induced differentiation of macrophages into the
M2-like phenotype [29]. Tim-3 expression delineates an
increase in CD8™ T cells during the lymph node metastasis
originating from ductal breast carcinoma [30]. Moreover,
Tim-3 increased expression is positively correlated with
lymph node metastasis of head and neck squamous cell car-
cinoma (HNSCC) [117].

The Tim-3 expression is improved on CD4* T and CD8*
T cells isolated from the blood of patients afflicted by the
lymph node, central nervous system, and bone metastasis of
prostate cancer [118] and Tim-3 expression is also increased
along with pulmonary metastasis stemming from prostate
cancer and its expression augments metastasis by the stim-
ulation of IL-6-STAT3 pathway [31]. The Tim-3 expres-
sion is enhanced on CD3-CD56" NK cells belonging to the
patients suffering from lung adenocarcinoma (LAC) with
lymph node metastasis since its expression can lead to the
diminished cytotoxicity and IFN-y synthesis of peripheral
NK cells [32]. Furthermore, Tim-3 improved expression on
CD47 TILs is associated with lymph node metastasis stem-
ming from non-small-cell lung carcinoma (NSCLC) [119].
TIM-3 ligation promotes metastasis of CCRCC through the
inhibition of GATA3 since GATA3 inhibition stimulates the
migration and invasion of CCRCC [28]. Moreover, TIM-
3/ Galectin-9 ligation diminishes the NK cell cytotoxicity
and induces the functional exhaustion of T cells in meta-
static melanoma [81]. The engagement of a non-galectin 9
putative receptor on B16 melanoma cells with endothelial
cell-expressed Tim-3 triggers the NF-kB signaling pathway
in B16 cells. The activated NF-xB signaling augments the
proliferation and resistance to apoptosis through upregulat-
ing the Bcl-2 and Bcl-xL and downregulating the Bax in
these tumor cells and promotes the formation of metastatic
nodules in the lung [82].

Increased expression of Tim-3 has been detected along
with the lymph node and tumor node metastasis originating
from ESCC. EMT is one of the most substantial steps dur-
ing the metastasis of solid tumors and Tim-3 stimulates the
EMT in ESCC and subsequently leads to metastasis [83].
Moreover, Tim-3 enhanced expression is associated with
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Fig.2 Diverse roles of the immune checkpoint in tumor cells that
drive to the stimulation or inhibition of metastasis. Inhibitory
immune checkpoints including PD-1, B7-H7, TIM-3, PI3Ky, CD73,
and CD 47 play monumental roles during metastasis; these immune
checkpoints employ diverse mechanisms such as IL-8 formation,
EMT stimulation, and T cell deterioration. B7-H7 and CD73 induce
their promoting role through IL-8 formation during metastasis and

increased expression of EMT biomarkers including Slug,
Snail, and Smad in osteosarcoma [84]. Tim-3 expression on
MG-63 osteosarcoma cells promotes metastasis through the
stimulation of EMT and activating the NF-kB/Snail signal-
ing pathway. One of the molecular characteristics of EMT is
the downregulation of E-cadherin, which encourages tumor
cell infiltration and diffusion [27].

Detached tumor cells from the basement membrane or
extracellular matrix (ECM) enter the bloodstream and move
toward anoikis, but if anoikis is ceased, metastasis will be
initiated [120]. Tim-3 promotes metastasis of RCC through
the potentiation of invasiveness and weakening the anoikis
stemming from ECM detachment. Anoikis is a special form
of programmed cell death and is induced by disengagement
from the surrounding ECM or adjacent cells. Anoikis is one
of the most significant features of metastasis [28]. Inversely,
it has been depicted that low Tim-3 mRNA levels in the
tumor tissue and blood mononuclear cells are significantly
correlated with lymph node metastasis and distant metas-
tasis of colorectal cancer [121]. The Tim-3 expression is
also increased on NK cells belonging to patients with non-
metastatic CRC [122]. Although, Tim-3 expression on the
HCT116 and HT-29 cells triggers distant and tumor node
metastasis through the promotion of invasiveness and migra-
tion [123].
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the common mechanism of CD73 and A2AR is PI3K/AKT signaling
pathway to induce metastasis. The expression of inhibitory immune
checkpoints such as CTLA-4, BTLA, and A2AR on tumor cells can
promote metastasis while, CD40 expression which is a costimulatory
immune checkpoint cripple metastasis via affecting the NK and T
cells functions and the synthesis of cytokines

CD73

CD73 expression on two human cervical cancer cell lines
Hela and SiHa encourage metastasis through the augmenta-
tion of EGFR/Akt and VEGF/Akt pathway, which plays a
significant role during metastasis [21]. Improved expression
of CD73 indicates a strong positive correlation with metas-
tasis stemming from CRC and stimulates metastasis through
the activation of the MAPK/ERK signaling pathway [22,
124]. The production of extracellular adenosine by tumor-
derived CD73 promotes breast cancer metastasis to the lung
through the activation of A2B adenosine receptors since the
administration of anti-CD73 mAb can reduce the number
of spontaneous lung metastases originating from the injec-
tion of breast cancer 4T1.2 cells into the mammary fat pad
of female wild-type BALB/c mice [85]. CD73 expression
assists metastasis in HCC via activating the PI3K/AKT sign-
aling by inducing Rap1-mediated membrane localization of
P110p [86]. CD73 expression encourages lung metastasis
of 4T1.2 and tumor cells via triggering the LFA1 clustering
and adenosine formation since tumor cells employ these two
mechanisms to enhance their attachment to the ECM, which
is a crucial factor for promoting lung metastasis. Actually,
adenosine formation by CD73 stimulates A2A receptors
and suppresses the immune system mechanisms such as NK
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Table 2 (continued)
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[112]

Animal testing Enhancing the expression of MMP-2, MMP-7, MMP-9,

MKN45 cells

A2AR

Gastric cancer

and MMP-13 and potentiating the PI3K-AKT-mTOR

signaling

[113]
(23]

Animal testing Suppressing the maturation of NK cells

NK cells

A2AR

Breast cancer and melanoma A2AR

Breast cancer

Animal testing Suppressing the NK cells perforin-mediated cytotoxicity

NK cells

and cytokine synthesis

[114]

Animal testing Impeding the immune cell infiltration particularly of

LWTI cells

A2AR

Melanoma

CDS8™ T cells into the tumor microenvironment

[18]
[115]

Diminishing the proliferation of TILs

Clinical trial

T cells
Tregs

TIGIT
TIGIT

Melanoma

Animal testing Potentiating the expression of the co-inhibitory recep-

Melanoma

tor TIM-3 in tumor tissue and suppresses the immune

system

[116]

Animal testing Crippling the NK cells cytotoxic activities and IFN-y

NK cells

TIGIT

Breast cancer

synthesis

PDAC pancreatic ductal adenocarcinoma; PD-] programmed cell death-1; IFN-y interferon-gamma; TNF-a tumor necrosis factor-alpha; TNBC triple-negative breast cancer; ERK extracellular
signal-regulated kinase; mTOR mammalian target of rapamycin; NSCLC non-small-cell lung carcinoma; HCC hepatocellular carcinoma; HNSCC head and neck squamous cell carcinoma

cell maturation and perforin-mediated NK cell cytotoxic-
ity by the use of this stimulation [23]. Furthermore, CD73
expression on T-47D human breast cancer cells potentiates
metastasis of breast cancer by increased expression of the
epidermal growth factor receptor (EGFR) and IL-8 through
the improved formation of adenosine [15]. CD37 inhibi-
tion suppresses lung metastasis originating from melanoma
through the induction of expansion of CD11b*Gr-"" myeloid
cells and enhancing the synthesis of TNF-a and interleukin
1B (IL-1PB) [24].

Lack of CD73 expression on B16F10 cells injected into
mice intravenously reduces lung metastasis by 3—4 times.
Moreover, CD73 expression on endothelial cells is essential
to induce metastasis in a manner independent from immu-
nosuppressive effects [125]. Although, it has been indicated
that CD73 expression demonstrates no effects on promot-
ing the metastasis of B16-F10 cells and its expression on
host cells especially hematopoietic and endothelial cells
have no facilitating effects on the metastatic spread of B16-
F10 cells probably because of the ineffective formation of
adenosine by the tumor itself [126]. It has been illustrated
that the induction of melanoma metastasis declines in mice
lacking CD73 dramatically since, among TILs belonging
to these mice, the numbers of mannose receptor-positive
macrophages are decreased while IFN-y and NOS2 mRNA
production is increased [87]. CD73 expression on B16F10
cells enhances their adherence to the endothelial cells and
increases metastasis probability since the utilization of
AOPCP (adenosinea, f-methylene 5'-diphosphate) which
inhibits specific tumor cell-ECM interactions through CD73
was able to decline tumor cells adherence [88].

CD73 expression on HNSCC cells stimulates lymph node
metastasis through stimulating the adenosine A3R and acti-
vating the signaling of EGF/EGFR [89]. The expression
of CD73 is increased on advanced rectal adenocarcinoma
cells associating with liver and lymph node metastasis [127].
It has been delineated that there is no difference between
the expression of CD73 in NSCLC cells and lymph node
metastasis [128]. While CD73 expression demonstrates an
increase in metastasis of human CRC [129]. CD73 expres-
sion is enhanced in laryngeal lesions and lesions of the oral
cavity originating from HNSCC during lymph node metasta-
sis [130]. Moreover, lymph node metastasis stemming from
the injection of MDA-MB-435 cells into the mammary
fat pad of mice is associated with increased expression of
CD73 [131]. The expression of this molecule on lymph node
metastasis of prostate cancer is increased in comparison to
normal lymph nodes [132].

It has been revealed that CD73 expression is improved in
patients afflicted by lung metastasis of metastatic melanoma
and metastasis originating from gastric carcinoma [133,
134]. Furthermore, the induction of cancer by the injection
of MB-MDA-231 cells into mice is positively correlated
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with increased expression of CD73 [135]. Reversely, the
expression of this molecule in the peritoneum, omentum, and
ovary metastasis of endometrial tumors is associated with a
decline since CD73-generated adenosine diminishes metas-
tasis through induction of epithelial integrity. In this sur-
vey, it has been determined that CD73-generated adenosine
promotes cortical actin polymerization through adenosine
A1 receptor induction of a Rho GTPase CDC42-dependent
conformational change of the actin-related proteins 2 and
3 actin polymerization complex member N-WASP [136].

CTLA-4

Increased cytotoxic T-lymphocyte antigen 4 (CTLA-4)
expression has been recorded on CD8* and CD4" TALs
isolated from metastatic ovarian cancer microenvironment
[137]. It has been indicated that anti-CTLA-4 administration
can potentiate the immune responses of NY-ESO-1 antigen-
specific B cell and T cells through augmented production of
MIP-1p, IFN-y, and TNF-«a in patients suffering from meta-
static melanoma [138]. The administration of anti-CTLA-4
does not demonstrate any effects on the restriction of lung
metastasis of melanoma, however; concurrent use of this
treatment with F10/g-vaccinated mice can result in sup-
pressed lung colonization and eradicated pulmonary metas-
tases via increased infiltration of mononuclear cells [139].
The usage of adjunctive CTLA-4 blockade immediately
after primary prostate tumor resection can diminish the rate
of metastatic relapse from 44 to 97.4% in the lymph nodes
[140]. Moreover, the administration of CTLA-4 blockade
can induce anti-tumor responses against CNS metastasis
in patients suffering from melanoma [141]. The adminis-
tration of the CTLA-4 blocking antibody MDX-CTLA-4
decreases blood CA-125 levels by 48%, 2 months after the
initiation of treatment while this response is not durable and
the second infusion of MDX-CTLA-4 can maintain CA-125
levels for 2 months. MDX-CTLA-4 administration can sup-
press metastasis to the CNS, lungs, abdomen, and soft tis-
sues through the induction of extensive tumor necrosis and
CDS8™ T cell infiltration in patients suffering from meta-
static melanoma, which previously vaccinated with irradi-
ated cancerous cells engineered to form granulocyte—mac-
rophage colony-stimulating factor [78]. The utilization of
ipilimumab, which is a CTLA-4 blocker, has demonstrated
promising results in fighting against the metastatic tumors
especially metastatic melanoma [142]. The administration
of ipilimumab can be followed by restrained bone and lung
metastasis resulting from metastatic RCC. Ipilimumab uti-
lization also shows substantial effects on the suppression of
metastatic castration-resistant prostate cancer and declines
prostate-specific antigen levels from 650 ng/ml in the first
day of treatment to 0 ng/ml in 84th day of the treatment
[143, 144]. Furthermore, the administration of ticilimumab,

a human monoclonal antibody against CTLA-4 can create
sufficient anti-tumor responses against melanoma metasta-
sizing to the subcutaneous tissues, lymph nodes, and lung
through decreasing the number of Tregs and IL-10 produc-
tion and elevating IL-2 production by activated T cells [79].

PD-1

Programmed cell death-1 (PD-1) expression on CD4" and
CD8™ TILs is increased during cutaneous metastasis origi-
nating from melanoma and this increase leads to declined
production of IFN-y in these cells [17]. A previous study
has delineated that inhibited PD-1 expression enhances the
percentage of CD8* splenocytes and CD8* TIL and the for-
mation of IFN-y in patients suffering from metastatic PDAC
[67]. Furthermore, PD-1 blockade on IFN-y— and TNF-
producing NY-ESO-1-specific CD8" T cells isolated from
peripheral blood mononuclear cells belonging to patients
suffering from metastatic melanoma increases the number of
these cells and ameliorates the therapeutic process of these
patients [18]. The stimulation of PD-1/PD-L1 on MDA-
MB-231 and 4T1 tumor cells derives to doxorubicin resist-
ance and on DU145 cells encounters docetaxel resistance,
which would be followed by metastasis in all of these tumor
cells. The activation of the PD-1/PD-L1 pathway triggers
the phosphorylation of ERK and mTOR in MDA-MB-231
cells, potentiates the proliferative potential of tumor cells,
and initiates the resistance to chemotherapy [68].

The inhibition of PD-1 engagement by the use of pem-
brolizumab increases the number of CD8* T cells during
liver metastasis resulting from melanoma and the NSCLC
while the number of CD8* T cells at the invasive margin
is declined dramatically [69]. Surprisingly, PD-1* lympho-
cytes and the ratios between PD-1* and CD8* lymphocytes
have delineated a negative correlation with the progress
levels of brain metastasis of melanoma and NSCLS which
indicates that brain metastasis escapes from the immune
system by increased expression of PD-1 at its initial steps.
PD-L1 improved expression demonstrates a strong positive
correlation with the abundance of FOXP3-positive lym-
phocytes [70]. Improved expression of PD-L1 is associated
with increased tumor size in sentinel lymph node biopsy of
metastatic melanoma [145]. Moreover, PD-L1 expression
has been observed in circulating tumor cells isolated from
patients suffering from metastatic bladder cancer [146].

Enhanced expression of PD-L1 has been detected on the
immune cells isolated from patients suffering from intesti-
nal and peritoneal metastasis originating from metastatic
melanoma. Moreover, PD-L2 expression on metastatic
melanoma cells, DCs, and histiocytes isolated from patients
suffering from metastatic melanoma encounter increased
rates. Both PD-L1 and 2 expressions on tumor cells deline-
ate a strong positive correlation with CD3*, CD4*, CD8™,
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FoxP3™ cells [147]. PD-L1 expression is associated with
32% of primary CCRCC patients and 23% of metastatic
ones. Thus, PD-L1 expression does not demonstrate signifi-
cant differences between primary and metastatic CCRCC.
Furthermore, the expression of this molecule on tumor-
infiltrating mononuclear cells is associated with negligible
differences between primary and metastatic conditions of
this carcinoma [148]. It has been also revealed that PD-L1
and PD-L2 expressions are increased by 53% and 36% of
breast cancer brain metastases (BCBM) respectively. PD-1
expression is detected on TILs isolated from 23% of patients
suffering from BCBM and its increased expression is cor-
related with aging. In this survey, no correlation has been
reported between PD-1 expression on TILs and PD-1 ligands
in BCBM [149]. Increased expression of PD-L1 is associ-
ated with higher WHO tumor grade (grade 3) in metastatic
gastroenteropancreatic neuroendocrine tumors [150]. PD-L1
expression in patients suffering from lymph node metasta-
sis of gastric carcinoma demonstrates a significant increase
[151]. Furthermore, stronger expression of PD-L.1 has been
detected in the metastatic samples of CCRCC in comparison
to primary samples and its augmented expression on tumor
cells and infiltrating lymphocytes of patients suffering from
metastatic renal cell carcinoma has been demonstrated [67,
150, 152-156].

B7-H3

B7-H3 expression is increased in both primary and meta-
static melanoma and its impediment declines metastasis
to the brain, tibia, columna, lung, and liver, dramatically,
through declining the signal transducer and activator of
transcription 3 (Stat3) phosphorylation level, reducing IL-8
formation, downregulation of matrix metalloproteinase-2
(MMP-2), and upregulation of tissue inhibitor of metal-
loproteinases 1 (TIMP-1) and TIMP-2 [33]. It has been
demonstrated that B7-H3 expression is enhanced in meta-
static melanoma in comparison to primary melanoma and
promotes metastasis through the upregulation of cyclin D1,
Stat3, and p-Stat3 [34]. Moreover, increased B7-H3 expres-
sion is associated with increased probability of lymph node
metastasis of HCC and B7-H3 stimulation promotes metas-
tasis through increasing the activity of MMP-2 and MMP-9
and targeting the EMT by the activation of JAK2/Stat3/
Slug signaling pathway [19]. It has been illustrated that the
expression of B7-H3 is improved in lymph node metastasis
resulting from NSCLC because its expression on NSCLC
cells hinders the proliferation and IFN-y secretion of T cells
[71]. B7-H3 expression on pancreatic cancer cells plays a
significant role in promoting lymph node metastasis since its
inhibition leads to the potentiation of CD8* T cell infiltration
into the tumors and induces strong antitumor responses [72].
Increased B7-H3 expression is concurrent with pulmonary

@ Springer

metastasis of osteosarcoma as its expression is associated
with the diminished density of infiltrating CD8* T lympho-
cytes and improved MMP-2 protein levels. MMP-2 plays a
substantial role in osteosarcoma invasiveness [36]. B7-H3
expression depicts a positive correlation with the progres-
sion of tumor-node-metastasis resulting from HCC and its
expression stimulates metastasis through declining the pro-
liferative rate and IFN- y synthesis of CD4* and CD8* TILs
[73].

Increased expression of B7-H3 promotes metastasis
of pancreatic cancer and gastric adenocarcinoma (GAC)
through increasing the migration and invasion [74, 75, 157].
Human pancreatic cancer cells expressing B7-H3 can pro-
duce soluble B7-H3 and its expression would be increased
along with the movement of these tumor cells toward metas-
tasis. Soluble B7-H3 activates NF-xB signaling through
TLR4 upregulation, which would be followed by IL-8, and
vascular endothelial growth factor (VEGF) expression and,
eventually, leads to metastasis. IL-8 and VEGF expressions
play important roles during the induction of metastasis of
pancreatic cancer [14]. Furthermore, the expression of B7-
H3 demonstrates an increase during metastasis to the cer-
vical nodes, celiac nodes, and lymph nodes resulting from
human pancreatic cancer [158]. The expression of this mole-
cule is ameliorated during lymph node and distant metastasis
resulting from CRC [159]. Although, its expression shows
no difference during lymph node metastasis of gastric carci-
noma [157]. It has been reported that the patients afflicted by
distant metastasis of HNSCC possess high levels of B7-H3
expression and its expression is associated with diminished
numbers of tumor-infiltrating CD8* T cells [76]. Moreover,
nodal and distant metastasis demonstrate a positive correla-
tion with the levels of soluble B7-H3 circulating in patients
with NSCLC [160].

CD47

CDA47 expression demonstrates an increase in patients
afflicted by lymph node metastasis originating from ESCC
and ovarian cancer [99, 161, 162]. CD47 expression is also
positively correlated with lymph node metastasis of lumi-
nal-type breast cancer [162]. Furthermore, the expression
of CD47 is increased during the lymph node metastasis of
invasive CRC [163].

HCC cells expressing CD47 are stimulated to move
toward metastasis. Increased probability of tumor node
metastasis is associated with the enhanced serum levels of
cathepsin S (CTSS) that possess a substantial role during the
invasiveness of HCC and CD47 promotes CTSS expression
via NF-kB activation [90]. CD47 engagement encourages
metastasis of astrocytoma cell line U87 and CCF-STTGI1
through the upregulation and downregulation of UHRF1
and p16™K4A respectively. Moreover, CD47 interaction
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activates NF-xB transactivation and subsequently, improves
the expression of inflammatory genes IL-6, IL-7, and MCP-1
and leads to metastasis [91]. CD47 expression stimulates the
proliferation and metastasis of colorectal adenocarcinoma
cell DLD-1 through the activation of the MAPK/ERK sign-
aling pathway [92].

The expression of CD47 is enhanced along with the
development of leiomyosarcoma cells toward metastasis.
CD47 blockade by the use of anti-CD47 (B6H12) on the
tumor cells potentiates the phagocytosis of these cells by
macrophages and this blockade diminishes lung metasta-
sis of leiomyosarcoma LMS04 cells by 70 times [93]. The
employment of anti-CD47 siRNA delineates that CD47
blockade can restrain lung metastasis stemming from mela-
noma since the lack of CD47 expression on macrophages
augments these immune cells phagocytosis and its expres-
sion is increased during metastasis development [94].

CD47 blockade declines lymphoma metastasis to the
brain, pituitary gland, nasal cavity, bone marrow, pan-
creas, kidney, and liver, dramatically, through augmenting
the phagocytosis of macrophages since CD47 expression
depicts an increase in metastatic and disseminated lym-
phoma in comparison to primary lesions. CD47 promotes
chemokine-mediated migration of lymphoma cells and by its
blockade, it has been demonstrated that this molecule pos-
sesses a notable role in the migration of these cells toward
known lymphoma chemo attractants SDF-1a and CXCL13
[95]. CD47 expression is enhanced in primary PDAC and
its metastasis and its blockade restricts metastasis through
potentiated phagocytosis of pancreatic cancer stem cells
by macrophages and induced apoptosis of cancerous cells
[96]. The expression of CD47 is improved in metastatic
regions of medulloblastoma in comparison to the primary
tumor. The employment of a humanized anti-CD47 antibody
Hu5F9-G4 diminishes the metastasis in the forebrain and
the spine originating from medulloblastoma, notably, via
augmenting the phagocytosis of macrophages [97]. CD47
increased expression is positively correlated with the move-
ment of melanoma cells toward metastasis and its blockade
suppresses the metastasis through enhancing the abilities of
macrophages and the number of differentiated macrophages
(by 50%) in the pulmonary sites of metastasis, declining the
expression of Nos2 mRNA, and stimulating the expression
of key enzymes involving during NO synthesis [98]. Moreo-
ver, CD47 expression demonstrates an improvement in oste-
osarcoma metastasis and the utilization of Anti-CD47 Abs
eliminates spontaneous metastasis of KRIB osteosarcoma
cells via the potentiation of macrophages phagocytosis [99].

PI3Ky

Phosphatidylinositol 3-kinase-gamma (PI3Ky) expression
on macrophages promotes metastasis of PDAC through the

suppression of CD8 cell mobilization into PDACs tissue,
the augmented formation of PDGF-BB by macrophages, and
the induction of transcription of genes associated with the
M2 immunosuppressive macrophages phenotype in PDACs
including immunosuppressive factors Argl and Tgfb [25].
Furthermore, PI3Ky expression on macrophages triggers
metastasis of PDAC through the enhanced formation of
PDGF-BB [100]. PI3Ky expression on macrophages sup-
presses the immune responses during the growth of gastric
cancer through the stimulation of Akt, mMTOR, and C/EBPJ
and inhibition of NFkB and eventually increases the num-
bers of metastatic nodules in the lung [101]. PI3Ky expres-
sion on B16F10 melanoma cells promotes metastasis to the
lungs of mice suffering from melanoma caused via the injec-
tion of B16F10 cells to their tail veins through increasing
the expression of MMP-9, uPA, VEGF, HIF-1a, and HIF-2«
by tumor-associated macrophages (TAMs) [26]. It has been
delineated that IPI-549 use which is a PI3Ky inhibitor can
reduce lung metastasis resulting from the injection of B16-
F10 cells into C57BL/6 J mice since PI3Ky inhibition can
stimulate the polarization of myeloid cells to a less immu-
nosuppressive phenotype and potentiate T effector activation
and T cell-mediated cytotoxicity [102, 164].

PI3KYy expression is increased on metastatic breast
cancer MDA-MB-231 and MDA-MB-436 cells and this
increase promotes metastasis to the regional lymph node
via potentiating the synthesis of lamellipodia [104]. The
inhibition of PI3Ky expression on MDA-MB-231 cells also
restricts the metastasis of these tumor cells by increasing
the susceptibility to anoikis. Moreover, reduced expression
of PI3Ky can be followed by restrained spontaneous and
experimental metastasis in the mouse 4T1 model of breast
cancer [105]. PI3Ky encourages metastasis through reducing
the CXCL12-mediated human melanoma cells adhesion to
fibronectin and enhancing the invasiveness [106].

A2AR

Adenosine A2A receptor (A2AR) delineates an increase
in RCC patients who were afflicted by visceral metastases
(80%) and hepatic metastases (20%) [165]. A2aR expres-
sion is enhanced on metastatic gastric cancer MKN45
cells and adenosine interaction with adenosine receptor
A2a provokes the invasiveness and migration of these cells
and eventually leads to metastasis through augmenting the
PI3K-AKT-mTOR signaling and the expression of MMP-
2, MMP-7, MMP-9, and MMP-13 [112]. A2AR stimulation
potentiates CD73" breast cancer metastasis via the inhibition
of perforin-dependent NK cytotoxicity [111]. Furthermore,
A2AR engagement on NK cells promotes lung metastasis
through augmenting the immunosuppressive responses such
as the inhibition of cytokine synthesis, NK cell maturation,
and perforin-mediated NK cell cytotoxicity in patients
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afflicted by melanoma and breast cancer [23]. It has been
indicated that the hindrance of A2AR signaling can restrain
lung metastasis through improved immune cell infiltration,
particularly CD8* T cells into the tumor microenvironment
in an SM1WT1 BRAF-mutated melanoma tumor model
[166]. A2AR blockade by the use of PBF-509 can also sup-
press metastasis to the lungs belonging to mouse models
suffering from melanoma and fibrosarcoma caused by intra-
venous injection of MCA205 and B16F10 cells. Both cell
lines possessed CD79 expression [24].

BTLA

Increased expression of B- and T-lymphocyte attenuator
(BTLA) is detected on gastric cancer cells, which metas-
tasize to the lymph nodes [167]. BTLA expression is also
enhanced on B-Cell Lymphoma cells metastasizing to the
CNS [168]. BTLA expression delineates an increase in
B16F1 cells injected into mice via the tail vein and induces
pulmonary metastasis. These tumor cells escape from the
immune system by the use of BTLA-HVEM pathway since
impeding the signaling of BTLA-HVEM in the cell cul-
ture of naive mice splenocytes with B16F1 cells amelio-
rates specific cytotoxicity to B16F1 cells and the synthesis
of IL-2 and IFN-y [107]. It has been illustrated that by the
use of mice expressing the polyomavirus middle T oncopro-
tein under the mouse mammary tumor virus promoter in a
C57BL/6 background, BTLA blockade on mammary carci-
noma cells diminishes lung metastasis [108]. Also, BTLA
blockade improves the number of types I NKT cells and the
expression of cytotoxic marker genes such as perforin and
granzyme B [108].

LAG-3

Lymphocyte-activation gene 3 (LAG-3) expression is
increased on human plasmacytoid DCs isolated from mela-
noma metastasizing to the lymph node and skin. LAG-3*
pDCs possess tight contacts with melanoma cells and form
IL-6 actively. IL-6 induces immunosuppressive responses
through STATS3 signaling and IL-6 synthesized by plasma-
cytoid DCs stimulates the monocytes to produce C—C motif
chemokine ligand 2 (CCL2) which plays significant roles in
the recruitment of myeloid-derived suppressor cells at the
tumor site and M2 macrophage polarization and eventually
promotes metastasis [13]. Enhanced expression of LAG-3
has been detected on CD4" and CD8* T cells infiltrating
into metastatic lymph nodes of patients suffering from mela-
noma. Furthermore, the numbers of LAG-3* CD4" CD25*
FOXP3* T cells infiltrating into metastatic lymph nodes
are increased dramatically. The engagement of LAG-3 with
MHC 1II expressing on melanoma cells impedes apoptosis of
these tumor cells and provokes metastasis [110].
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LAG-3 expression delineates an increase in TILs isolated
from metastatic lymph nodes stemming from HNSCC and
this increased expression provokes metastasis via making the
resistance against the immune system and suppressing the
antitumor responses of CD8" T cells [109]. Moreover, the
number of extraepithelial and intraepithelial LAG-3* TILs
is increased in metastatic lymph nodes originating from
NSCLC [169].

TIGIT

T cell immunoreceptor with Ig and ITIM domains (TIGIT)
expression delineates an increase on tumor cells and anti-
gen-presenting cells (APCs) isolated from the tumor micro-
environment belonging to metastatic melanoma patients
and this increase on CD8* TILs isolated from metastatic
tumor single-cell suspensions from seven patients with
advanced melanoma stimulates metastasis through dimin-
ishing the proliferation of TILs [18]. TIGIT expression is
also enhanced on CD4" and CD8* T cells that infiltrated
melanoma tumors in mice afflicted by B16F10 melanoma
tumors. Furthermore, TIGIT expression has been detected
on Tregs and TIGIT™ Tregs suppresses the immune system
via improving the expression of the co-inhibitory receptor,
TIM-3, in tumor tissue [115]. It has been illustrated that
TIGIT inhibition on NK cells suppresses metastatic breast
cancer cells, MDA MB-453 through provoking the cytotoxic
activities and IFN-y synthesis of NK cells [116].

VISTA

V-domain Ig suppressor of T cell activation (VISTA) expres-
sion demonstrates negligible differences in metastatic lymph
nodes and primary human OSCC [170]. Increased number of
VISTA* lymphocytes has been detected in patients afflicted
by metastatic melanoma and VISTA expression is positively
correlated with intratumoral nuclear expression of FOXP3*
Tregs [171] and melanoma suppresses the immune system
responses via upregulating FOXP3* Tregs [172].

Discussion and conclusion

A thorough review of the literature revealed that recent mon-
umental discoveries in the field of immune checkpoints are
showing us a promising future for the treatment of metastasis
by the use of costimulatory (Fig. 1) and inhibitory (Fig. 2)
immune checkpoints regulation in clinical and animal test-
ing. Metastasis can be considered as the last stage of cancer
aggressiveness and according to previous studies, occur-
ring metastasis can reduce the survival of patients afflicted
by lung [173] and gastric [174] cancers by 6 months. The
expression of inhibitory immune checkpoints that employed
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by tumor cells for their development, demonstrates an
increase in a plethora of tumors and the inhibition of these
immune checkpoints can result in promising outcomes to
suppress metastasis [30, 163]. On the other hand, diverse
studies have revealed that the stimulation of costimulatory
immune checkpoints can inhibit metastasis stemming from
various cancers such as TNBC, melanoma, and CRC since
the inherent nature of these immune checkpoints is to poten-
tiate the immune system [47].

‘We conclude, based on the current evidence, that there is
a lack of cancer treatment efficacy when the primary tumor
turns to a metastatic one because metastasis has intricate
molecular processes. Fortunately, monumental advance-
ments have been obtained in the field of immune checkpoints
during recent years, which shed light upon the treatment of
patients suffering from metastatic cancers. The regulation
of immune checkpoints in varied tumors can be employed
as a novel strategy and weapon to achieve better results for
impeding metastasis in the future. Thus, the extension of
research to detect the roles of immune checkpoints during
metastasis is increasingly needed and strongly suggested.
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