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Abstract 
Fourteen novel 4,5-diphenyl-imidazol-1,2,3-triazole hybrids 8a–n were synthesized with good yields by performing click 
reaction between the 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole and various benzyl azides. The synthesized com-
pounds 8a–n were evaluated against yeast α-glucosidase, and all these compounds exhibited excellent inhibitory activity  (IC50 
values in the range of 85.6 ± 0.4–231.4 ± 1.0 μM), even much more potent than standard drug acarbose  (IC50 = 750.0 μM). 
Among them, 4,5-diphenyl-imidazol-1,2,3-triazoles possessing 2-chloro and 2-bromo-benzyl moieties (compounds 8g and 
8i) demonstrated the most potent inhibitory activities toward α-glucosidase. The kinetic study of the compound 8g revealed 
that this compound inhibited α-glucosidase in a competitive mode. Furthermore, docking calculations of these compounds 
were performed to predict the interaction mode of the synthesized compounds in the active site of α-glucosidase.

Graphic abstract
A novel series of 4,5-diphenyl-imidazol-1,2,3-triazole hybrids 8a–n was synthesized with goodyields by performing click 
reaction between the 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1Himidazoleand various benzyl azides. The synthesized compounds 
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8a–n were evaluated againstyeast α-glucosidase and all these compounds exhibited excellent inhibitory activity (IC50 val-
uesin the range of 85.6 ± 0.4-231.4 ± 1.0 μM), even much more potent than standard drug acarbose(IC50 = 750.0 μM).

Keywords Anti-diabetic agents · Kinetic study · α-Glucosidase · Molecular docking · 4,5-Diphenyl-imidazol,1,2,3-triazole

Introduction

α-Glucosidase (EC 3.2.1.20) is a carbohydrate-hydrolyz-
ing enzyme that catalytic activity of it resulted in cleavage 
of poly- and disaccharides to glucose. Therefore, inhibi-
tion of this enzyme decreases postprandial blood glucose 
level. Several effective glucosidic-based α-glucosidase 
inhibitors such as acarbose [1], voglibose [2], miglitol [3], 
and nojirimycin, [4] are clinically used for the treatment 
of type 2 diabetes. These agents suffer from side effects 
such as flatulence, meteorism, abdominal distension, and 
diarrhea [5]. Recently, the design and development of non-
glucosidic-based α-glucosidase inhibitors have received 
attention in order to achieve more effective and safer 
α-glucosidase inhibitors [6, 7].

1,2,3-Triazole ring has a undeniable importance in 
medicinal chemistry due to having unique features such as 
metabolic stability, high dipole moment, and capability to 
form hydrogen bonds [8, 9]. The construction of this ring by 
click chemistry as an efficient method has led to increasing 
the development of biological active compounds contain-
ing 1,2,3-triazole ring [10]. The antibacterial, anticancer, 
antifungal, antitubercular, anti-acetylcholinesterase, and 
anti-HIV activities of 1,2,3-triazole derivatives have been 
well documented [10–16]. Furthermore, several hybrid 
scaffolds containing 1,2,3-triazole ring with high inhibitory 
activity against α-glucosidase have been reported (Fig. 1a, 
b) [17, 18]. In this regard, recently, we reported the synthe-
sis and α-glucosidase inhibitory activity of 1,2,3-triazole-
quinazolinone hybrids C (Fig. 1) [19]. On the other hand, 
several derivatives of imidazole with excellent α-glucosidase 
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inhibitory activity have been reported (Fig. 1) [20]. For 
example, 2,4,5-triarylimidazoles D and 2,4,5-triarylimida-
zole-1,2,3-triazole hybrids E are potent inhibitors against 
α-glucosidase (Fig. 1) [21]. Based on the mentioned points 
and in continuation of our interest in the synthesis of new 
α-glucosidase inhibitors, herein, we reported the design of 
a novel series of 4,5-diarylimidazole-1,2,3-triazole hybrids 
8a–n [22–24]. These compounds were synthesized by click 
reaction and evaluated against α-glucosidase. Furthermore, 
kinetic and docking studies were also performed to under-
stand the inhibition modes of these compounds against 
α-glucosidase.

Results and discussion

Chemistry

The synthetic route for the synthesis of 4,5-diphenyl-imida-
zol-1,2,3-triazole hybrids 8a–n is depicted in Scheme 1. It 
was started from the reaction between 2-hydroxy-1,2-diphe-
nylethanone 1 and thiourea 2 in DMF at 100 °C for 3 h to 
give 4,5-diphenyl-1H-imidazole-2-thiol 3. The latter com-
pound reacted with propargyl bromide 4 in the presence 
of potassium carbonate in acetone at 0–10 °C for 5 min to 
give 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole 5. 
On the other hand, different benzyl halides 6 and sodium 

azide reacted in the presence of  Et3N in the mixture of 
 H2O/t-BuOH at room temperature for 1 h. Finally, mix-
ture of 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole 
5,  CuSO4, and sodium ascorbate was added to the freshly 
prepared azide derivatives 7 and the reaction was contin-
ued at room temperature for 24 h to give the corresponding 
compounds 8a–n.

Biological study

In vitro α‑glucosidase inhibitory activity

The synthesized compounds 8a–n were screened for their 
in vitro inhibitory activities against α-glucosidase in com-
parison with the standard inhibitor acarbose. The obtained 
results were expressed as mean ± S.E. of three independ-
ent experiments. The  IC50 values of the target compounds 
demonstrated that all the synthesized compounds showed 
significant inhibition against α-glucosidase at concentra-
tions less than 231.4 ± 1.0 µM, while acarbose showed 
 IC50 = 750.0 ± 1.5.

In order to obtain an optimized α-glucosidase inhibi-
tor, the substituent was altered on the pendant phenyl moi-
ety. The most active compounds were 2-chloro, 2-bromo, 
2-fluoro, 2-methyl derivatives (the compounds 8g, 8i, 8d, 
and 8b, respectively) with  IC50 values ≤ 95.2 ± 0.4 µM.

Fig. 1  Several potent α-glucosidase inhibitors containing 1,2,3-triazole (a–c) or imidazole (e–d) and designed derivatives 8a–n as new 
α-glucosidase inhibitors
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The  IC50 value of the un-substituted compound 8a was 
173.4 ± 0.7. The introduction of methyl, fluoro, chloro, and 
bromo substituents on the 2-position of the pendant phe-
nyl group led to around twofold increase in the inhibitory 
activity, as observed in the compounds 8b, 8d, 8g, and 8i. 
Movement of the mentioned substituents to the 3 or 4-posi-
tion on the pendant phenyl group, as in the compounds 8e, 
8f, 8h, 8j, and 8k, led to a decrease in the inhibitory activity 
in comparison with their 2-substituted regioisomers. Inter-
estingly, the inhibitory activities of the 3-substituted com-
pound 8c with the electron-donating group (methoxy) and 
8m with the electron-withdrawing group (nitro) were more 
than those of the un-substituted compound 8a. On the other 

hand, the weakest compounds among the synthesized com-
pounds were 2-nitro and 4-nitro derivatives 8l and 8n. From 
the obtained results, it can be ascertained that the type and 
position of the substituents in the pendant phenyl group play 
a significant role in the inhibitory activity of the synthesized 
compounds.

Kinetic study

The kinetic study of the most active compound 8g against 
α-glucosidase was performed in order to determine the 
inhibition mode of the synthesized compounds. As can be 
observed in Fig. 2a, the Lineweaver–Burk plot showed that 

Scheme 1  Synthesis of 
4,5-diphenyl-imidazol-1,2,3-
triazole hybrids 8a–n 

∆

(a) (b)

Fig. 2  Kinetic study of compound 8g against α-glucosidase. a The Lineweaver–Burk plot in the absence and presence of different concentrations 
of compound 8g; b the secondary plot between Km and various concentrations of compound 8g 
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with increase in the concentration of the compound 8g, the 
Km gradually increased, while Vmax remained unchanged. 
This finding demonstrated that the compound 8g was a 
competitive inhibitor to α-glucosidase. The  Ki value of this 
compound was calculated as 85 μM through the secondary 
re-plot of the obtained Lineweaver–Burk plots (Fig. 2b).

Molecular modeling study

To clarify the interaction mode of the synthesized com-
pounds in the active site of α-glucosidase and explain the 
different activities of these compounds, molecular mod-
eling studies were conducted using Auto Dock Tools (ver-
sion 1.5.6) on the modeled α-glucosidase [25]. Acarbose as 
a standard inhibitor and compounds 8d–e, and 8g–i were 
docked in the modeled α-glucosidase. The superposed struc-
ture of acarbose and the most potent compound 8g in the 
active site of enzyme is shown in Fig. 3. Molecular modeling 
of the standard inhibitor acarbose predicted that this drug 
interacted with Asn241, His279, Thr301, Glu304, Thr307, 
Ser308, Pro309, Arg312, and Gln322 residues (Fig. 4) [25].

The 2-chloro substituent of the most active compound 
8g formed hydrophobic interactions with Phe311, Tyr313, 
and Arg312 (Fig. 4). The latter residue also created a hydro-
phobic interaction with pendant phenyl ring, an interaction 
with sulfur atom, and two interaction with 1,2,3-triazol 
ring (a hydrogen bond and a hydrophobic interaction). In 
addition, 1,2,3-triazol also interacted with His239 through 
a π–π interaction and a π-cation interaction. Imidazole moi-
ety formed a hydrogen bond with Thr307 and a π-anion 
with Glu304. Moreover, one of the phenyl rings attached 
to imidazole moiety interacted with residue His279 via a 
π-cation interaction. Comparison of interaction modes of 
acarbose and compound 8g in the active site showed that 
both compounds interacted with four amino acids Thr307, 
Arg312, His279, and Glu304. However, there are differences 
in the interactions of these compounds with active site: (1) 

acarbose interacted with Thr307 via a hydrogen bond and an 
unfavorable interaction while compound 8g interacted with 
this amino acid via a hydrogen bond, (2) acarbose interacted 
with His279 via a hydrophobic interaction while compound 
8g interacted with this amino acid via a π-cation interac-
tion, (3) acarbose interacted with Glu304 via a hydrogen 
bond, while compound 8g interacted with this amino acid 
via a π-anion interaction, and (4) acarbose formed a hydro-
gen bond and an unfavorable interaction with Arg312, while 
compound 8g, in addition to forming a hydrogen bond, cre-
ates three interactions with this amino acid. Further studies 
on binding energies of acarbose and compound 8g revealed 
that compound 8g has a lower binding energy (− 9.74 kcal/
mol) than acarbose (− 4.04 kcal/mol) and therefore binds 
easily to α-glucosidase than does acarbose.

Movement of the chloro substituent into 4-position, as 
in the compound 8h, caused a significant decrease in the 
potency and number of interactions with the active site in 
comparison with the 2-substituted compound 8g. In this 
regard, as can be observed in Fig. 4, the compound 8h inter-
acted with two important residues (Arg312 and Glu304), 
while the compound 8g interacted with four important resi-
dues (His279, Glu304, Thr307, and Arg312). The detailed 
binding mode of the compound 8h showed that 4-chloro 
substituent and phenyl ring of the benzyl moiety formed 
a hydrophobic interaction with Asp408 and a hydrophobic 
interaction with Arg312, respectively. 1,2,3-triazole ring of 
this compound created a hydrogen bond and a hydrophobic 
interaction with Arg312 and a weak hydrophobic interaction 
with Pro309. The latter amino acid established two weak 
hydrophobic interactions with 5-phenyl and imidazole rings. 
Moreover, the imidazole ring of compound 8h interacted 
with Glu304 via a π-anion (Fig. 4). The values of the bind-
ing energies of the compounds 8g and 8h were − 9.74 and 
− 9.19, respectively. This finding showed that the compound 
8g was more stable than the compound 8h inside the active 
site.

As can be observed in Table 1, the 2-chloro substituted 
compound 8g and 2-bromo substituted compound 8i showed 
approximately same inhibitory activity against AChE. 
2-Bromo substituent and imidazole moiety of the compound 
8i, like the compound 8g, interacted with Arg312, Phe311, 
Tyr313, Thr307, and Glu304 (Fig. 4). The 1,2,3-triazole ring 
of the compound 8i interacted with Arg312 and His239, 
while this moiety in the compound 8i only interacted 
with His239. In addition, the sulfur atom and phenyl ring 
attached to the imidazole ring in the compound 8i, unlike 
the compound 8g, could not interact with the active site. It 
is worthy to note that the binding energy of the compound 
8i (-10.12 kcal/mol) was better than that of the compound 
8g (− 9.74 kcal/mol).

The interaction mode of the third most potent compound 
8d showed that the pendant 2-fluoro phenyl ring of this 

Fig. 3  Acarbose (cyan) and most potent compound 8g (pink) super-
imposed in the active site pocket
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compound formed a π-anion interaction with Asp408 and a 
hydrophobic interaction with Arg312 (Fig. 5). Interactions 
of the 1,2,3-triazole and imidazole rings of the compound 
8d were similar to those of the compound 8i. Changing the 
position of the fluorine atom on the pendant phenyl ring 
from 2-position to 3-position led to a slight decrease in the 
inhibitory activity and minor changes in interaction mode 
(Table 1 and Fig. 5). The pendant 3-fluorophenyl ring of the 
compound 8e, unlike the compound 8d, could not interact 
with the active site. Interactions of the imidazole ring of the 
compound 8e were similar to those of the compound 8d. 
1,2,3-Triazole ring of compound 8e only formed a π-cation 

interaction with His239. The values for the binding energies 
of the compounds 8d and 8e were − 9.49 and − 9.43 kcal/
mol, respectively.

ADME and toxicity studies

ADME/T properties of the most potent compounds 8b, 8d, 
8g, and 8i were calculated using PreADMET as an online 
software, and the results are presented in Table 2 [26]. 
As can be seen in this Table, the most potent compounds 
have good Caco-2 cell permeability, human oral absorp-
tion (HIA), and skin permeability. On the other hand, blood 

Fig. 4  Interactions of the standard inhibitor acarbose and compounds 8g, 8h, and 8i in the active site amino acid residues of the modeled 
α-glucosidase
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brain permeability (BBB) of these compounds was not in the 
acceptable range. Predicting the toxicity of the most potent 
compounds 8b, 8d, 8g, and 8i by PreADMET Toxicity 
server demonstrated that these compounds were non-muta-
genic (Ames_test) and medium cardiotoxic (hERG_inhibi-
tion). All test compounds, with the exception of compound 
8i which may have a carcinogenic effect in rat, carcinogenic 
effect had not on mouse and rat.

Conclusion

We synthesized a new series of 4,5-diphenyl-imidazol-1,2,3-
triazole hybrids 8a–n in good yields with the use of the click 
reaction by coupling an 4,5-diphenyl–1H-imidazole con-
taining a terminal alkyne with various benzyl azides. These 
molecules were screened in vitro for their α-glucosidase 
inhibition. In general, the synthesized compounds showed 
excellent α-glucosidase inhibitory activities in comparison 
with acarbose as the standard drug. Among the synthesized 
compounds, the 2-chloro and 2-bromo derivatives 8g and 8i 
showed the highest α-glucosidase inhibitory activity. The 
compound 8g could inhibit α-glucosidase in a competitive 
mode. The docking study of these compounds confirmed 
that they were well fitted in the active site of α-glucosidase.

Experimental

Chemistry

The melting points of 4,5-diphenyl-imidazol-1,2,3-triazole 
hybrids 8a–n were determined on a Kofler hot-stage appa-
ratus. The 1H and 13C NMR spectra of the title compounds 
were determined on a Bruker FT-500 using TMS as an inter-
nal standard. The IR spectra were recoded using KBr disks 
on a Nicolet Magna FTIR 550 spectrophotometer. Elemental 
analysis was carried out with an Elementar Analysen system 
GmbH VarioEL CHN mode.

Table 1  In vitro α-glucosidase inhibitory activities of compounds 
8a–n

Compound R IC50 (µM) Compound R IC50 (µM)

8a H 173.4 ± 0.7 8h 4-Cl 159.8 ± 0.9
8b 2-CH3 95.2 ± 0.4 8i 2-Br 88.0 ± 0.5
8c 3-OCH3 121.0 ± 0.4 8j 3-Br 168.1 ± 0.7
8d 2-F 93.3 ± 0.6 8k 4-Br 128.1 ± 0.9
8e 3-F 103.3 ± 0.9 8l 2-NO2 213.8 ± 1.1
8f 4-F 125.2 ± 1.3 8m 3-NO2 136.9 ± 1.0
8g 2-Cl 85.6 ± 0.4 8n 4-NO2 231.4 ± 1.0
Acarbose – 750.0 ± 1.5 Acarbose – 750.0 ± 1.5

Fig. 5  Interaction modes of compounds 8d and 8e with the active site residues of modeled α-glucosidase
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General procedure for the preparation of 4,5‑diphe‑
nyl‑1H‑imidazole‑2‑thiol 3

A mixture of 2-hydroxy-1,2-diphenylethanone 1 (1 mmol, 
0.2 g) and thiourea 2 (1 mmol, 0.07 g) in DMF (15 mL) was 
heated at 100 °C for 3 h. Then, the mixture was poured into 
ice-cold water and the obtained precipitate was filtered off 
and recrystallized in ethanol to obtain 4,5-diphenyl-1H-im-
idazole-2-thiol 3 [27].

General procedure for the preparation of 4,5‑diphe‑
nyl‑2‑(prop‑2‑yn‑1‑ylthio)‑1H‑imidazole 5

A mixture of 4,5-diphenyl-1H-imidazole-2-thiol 3 (1 mmol, 
0.25 g), propargyl bromide 4 (1.2 mmol, 0.15 mL), and 
potassium hydroxide (1.2 mmol, 0.06 g) in acetone (10 mL) 
was stirred at 0–10 °C for 5 min. After completion of the 
reaction (checked by TLC), the reaction mixture was cooled 
down to room temperature and poured into cold water. Sub-
sequently, the precipitated product was filtered off to give 
pure 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole 5 
[28].

General procedure for the synthesis of 4,5‑diphenyl‑imi‑
dazol‑1,2,3‑triazole hybrids 8a–n

At first, benzyl azide derivatives 7 were prepared in situ. For 
this purpose, the mixture of benzyl halides 6 (1.1 mmol) and 
sodium azide (0.9 mmol) in the presence of  Et3N (1.3 mmol) 
and the mixture of water/t-BuOH (8 mL, 1:1) was stirred 
at room temperature for 1 h [19]. Subsequently, the mix-
ture of 4,5-diphenyl-2-(prop-2-yn-1-ylthio)-1H-imidazole 5 
(1 mmol, 0.3 g),  CuSO4 .5H2O (7 mol%, 0.3 g), and sodium 
ascorbate (15 mol%, 0.13 g) was added to the freshly pre-
pared benzyl azide derivative 7 and stirred at room tempera-
ture for 24-48 h. Upon completion of the reaction (monitored 
by TLC), the reaction mixture was poured into crushed ice. 
Then, the precipitated product was filtered off, washed with 

cold water, and purified by recrystallization in ethanol to 
give the corresponding derivatives 8a–n.

1‑Benzyl‑4‑(4,5‑diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)
‑1H‑[1,2,3]triazole (8a)

Cream powder; yield: 87% (0.37 g), mp 158–160; IR (KBr, 
υ): 3373, 1463, 771 cm−1; 1H NMR (500 MHz, DMSO-d6) δ 
12.62 (s, 1H, NH), 8.01 (s, 1H, Triazole), 7.46 (d, J = 7.7 Hz, 
1H, Ph), 7.43–7.36 (m, 4H, Ph), 7.35–7.32 (m, 2H, Ph), 
7.32–7.25 (m, 6H, Ph), 7.23 (s, 1H, Ph), 5.57 (s, 2H,  CH2), 
4.41 (s, 2H, S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 
144.20, 139.61, 137.75, 136.40, 131.12, 129.14, 129.11, 
128.62, 128.51, 128.30, 128.24, 128.10, 127.48, 127.02, 
123.94, 53.22 (S-CH2), 28.14  (CH2). Anal. Calcd for 
 C25H21N5S: C, 70.90; H, 5.00; N, 16.54. Found: C, 71.05; 
H, 5.16; N, 16.68.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(2‑meth
yl‑benzyl)‑1H‑[1,2,3]triazole (8b)

Cream powder; isolated yield: 94% (0.41 g), mp 167–169; 
IR (KBr, υ): 3375, 1460, 778 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.65 (s, 1H, NH), 7.85 (s, 1H, Triazole), 7.43 
(d, J = 7.6 Hz, 2H, Ph-H), 7.39 (d, J = 7.8 Hz, 1H, H3), 
7.38–7.35 (m, 3H, Ph), 7.33 (d, J = 6.7 Hz, 1H, Ph), 7.27 
(d, J = 7.5 Hz, 2H, Ph), 7.22 (d, J = 7.3 Hz, 1H, Ph), 7.19 
(dd, J = 7.3, 1.4 Hz, 1H, H6), 7.15 (d, J = 7.3 Hz, 1H, H5), 
7.09 (dd, J = 7.3, 1.5 Hz, 1H, H4), 7.06–7.01 (m, 1H, H3), 
5.56 (s, 2H,  CH2), 4.41 (s, 2H, S-CH2), 2.22 (s, 3H,  CH3); 
13C NMR (125 MHz, DMSO-d6) δ 143.59, 139.04, 137.18, 
136.14, 134.65, 133.77, 130.49, 130.24, 128.55, 128.50, 
128.16, 128.01, 127.60, 127.50, 126.91, 126.45, 126.05, 
123.30, 50.84 (S-CH2), 27.47  (CH2), 18.38  (CH3). Anal. 
Calcd for  C26H23N5S: C, 71.37; H, 5.30; N, 16.01. Found: 
C, 71.51; H, 5.45; N, 16.19.

Table 2  ADME/T profile of the 
most potent compounds 8b, 8d, 
8g, and 8i 

a The recommended ranges for Caco2: < 25 poor, > 500 great, HIA: > 80% is high < 25% is poor, 
BBB = − 3.0 to 1.2, and Skin_Permeability = − 8.0 to 1.0

ADME/T  propertiesa Compound

8b 8d 8g 8i

Caco2 36.2378 52.9295 56.1878 53.5177
HIA 96.022248 95.942170 96.265681 96.410695
BBB 2.9484 2.41331 3.53386 3.75894
Skin_Permeability − 2.14579 − 2.42795 − 2.31292 − 2.33852
Ames_test Non-mutagen Non-mutagen Non-mutagen Non-mutagen
hERG_inhibition Medium risk Medium risk Medium risk Medium risk
Carcino_Mouse Negative Negative Negative Negative
Carcino_Rat Negative Negative Negative Positive
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4‑(4,5‑Diphenyl‑1H‑imida‑
zol‑2‑ylsulfanylmethyl)‑1‑(3‑methoxy‑benzyl)‑1H‑[1,2,3]
triazole (8c)

Cream powder; isolated yield: 92% (0.42 g), mp 172–174; 
IR (KBr, υ): 3379, 1466, 762 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.66 (s, 1H, NH), 8.02 (s, 1H, Triazole), 
7.49–7.43 (m, 2H, Ph), 7.41–7.35 (m, 4H, Ph), 7.32–7.25 
(m, 3H, Ph), 7.24–7.17 (m, 2H,Ph, H5), 6.90–6.84 (m, 
2H, H2,6), 6.80 (s, 1H, H4), 5.54 (s, 2H,  CH2), 4.44 (s, 
2H, S-CH2), 3.69 (s, 3H,  OCH3); 13C NMR (125 MHz, 
DMSO-d6) δ 159.40, 143.78, 139.26, 137.36, 134.84, 
130.71, 129.91, 129.86, 128.63, 128.17, 127.76, 127.60, 
127.06, 126.73, 126.57, 123.50, 119.93, 113.68, 113.45, 
55.04  (OCH3), 52.72 (S-CH2), 27.64  (CH2). Anal. Calcd 
for  C26H23N5S: C, 68.85; H, 5.11; N, 15.44. Found: C, 
68.91; H, 5.25; N, 15.59.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(2‑fluor
o‑benzyl)‑1H‑[1,2,3]triazole (8d)

Cream powder; isolated yield: 90% (0.40 g), mp 159–161; 
IR (KBr, υ): 3365, 1467, 777 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.67 (s, 1H, NH), 8.02 (s, 1H, Triazole), 
7.96 (d, J = 19.9 Hz, 1H, H3), 7.55 (d, J = 7.2 Hz, 1H, 
H4), 7.45–7.35 (m, 7H, Ph), 7.30–7.25 (m, 3H, Ph), 7.19 
(t, J = 9.6 Hz, 2H, H6), 7.12 (t, J = 7.6 Hz, 1H, H5), 5.61 
(s, 2H,  CH2), 4.41 (s, 2H, S-CH2); 13C NMR (125 MHz, 
DMSO-d6) δ 160.99, 159.03, 148.25, 143.84, 139.26, 
137.99, 137.37, 134.73, 130.69, 130.62, 130.60, 130.57, 
129.55, 128.70, 128.61, 128.23, 128.12, 127.71, 127.08, 
126.59, 124.75, 124.72, 123.55, 122.73, 122.62, 115.61, 
115.44, 46.84 (S-CH2), 27.62  (CH2). Anal. Calcd for 
 C25H20FN5S: C, 68.01; H, 4.57; N, 15.86. Found: C, 68.16; 
H, 4.37; N, 15.71.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(3‑fluor
o‑benzyl)‑1H‑[1,2,3]triazole (8e)

Cream powder; isolated yield: 97% (0.43 g), mp 163–165; IR 
(KBr, υ): 3375, 1455, 776 cm−1; 1H NMR (500 MHz, DMSO-
d6) δ 12.66 (s, 1H, NH), 8.06 (s, 1H, Triazole), 7.54–7.45 (m, 
2H, Ph), 7.44–7.41 (m, 1H, H5), 7.41–7.35 (m, 3H, Ph), 7.33 
(d, J = 7.6 Hz, 2H, Ph), 7.30–7.24 (m, 2H, Ph), 7.24–7.20 (m, 
1H, Ph), 7.14 (t, J = 10.0 Hz, 2H, H2, H6), 7.09 (d, J = 8.0 Hz, 
1H, H4), 5.59 (s, 2H,  CH2), 4.44 (s, 2H, S-CH2); 13C NMR 
(125 MHz, DMSO-d6) δ 163.06, 161.12, 143.92, 139.23, 
138.60, 138.54, 137.34, 134.78, 130.76, 130.70, 130.64, 
128.61, 128.12, 127.74, 127.61, 127.08, 126.57, 123.90, 
123.88, 123.64, 115.01, 114.84, 114.67, 52.10  (SCH2), 27.69 

 (CH2). Anal. Calcd for  C25H20FN5S: C, 68.01; H, 4.57; N, 
15.86. Found: C, 68.14; H, 4.32; N, 15.78.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(4‑fluor
o‑benzyl)‑1H‑[1,2,3]triazole (8f)

Cream powder; isolated yield: 85% (0.37 g), mp 169-171; 
IR (KBr, υ): 3370, 1466, 769 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.67 (s, 1H, NH), 7.99 (s, 1H, Triazole), 7.46 
(d, J = 7.7 Hz, 2H, H3, H5), 7.38 (d, J = 5.3 Hz, 4H, Ph), 7.33 
(dt, J = 8.4, 3.6 Hz, 3H, Ph), 7.27 (d, J = 7.5 Hz, 2H, Ph), 7.22 
(t, J = 7.1 Hz, 1H, Ph), 7.09 (t, J = 8.8 Hz, 2H, H2, H6), 5.56 (s, 
2H,  CH2), 4.43 (s, 2H, S-CH2); 13C NMR (125 MHz, DMSO-
d6) δ 162.83, 160.88, 143.91, 139.21, 137.39, 134.86, 132.18, 
130.69, 130.24, 130.18, 128.70, 128.22, 127.81, 127.71, 
127.10, 126.66, 123.46, 115.64, 115.47, 52.02  (SCH2), 27.77 
 (CH2). Anal. Calcd for  C25H20FN5S: C, 68.01; H, 4.57; N, 
15.86. Found: C, 67.94; H, 4.69; N, 15.94.

1‑(2‑Chloro‑benzyl)‑4‑(4,5‑diphenyl‑1H‑imidazol‑2‑ylsulfan
ylmethyl)‑1H‑[1,2,3]triazole (8g)

Cream powder; isolated yield: 89% (0.41 g), mp 162–164; 
IR (KBr, υ): 3378, 1462, 779 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.66 (s, 1H, NH), 7.97 (s, 1H, Triazole), 
7.49–7.15 (m, 14H, Ph, H3, H4, H5, H6), 5.67 (s, 2H,  CH2), 
4.43 (s, 2H, S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 
143.77, 139.15, 137.33, 134.86, 133.16, 132.58, 130.68, 
130.39, 130.15, 129.55, 128.62, 128.15, 127.76, 127.62, 
127.05, 126.56, 123.81, 50.57  (SCH2), 27.61  (CH2). Anal. 
Calcd for  C25H20ClN5S: C, 65.56; H, 4.40; N, 15.29. Found: 
C, 65.38; H, 4.53; N, 15.12.

1‑(4‑Chloro‑benzyl)‑4‑(4,5‑diphenyl‑1H‑imidazol‑2‑ylsulfan
ylmethyl)‑1H‑[1,2,3]triazole (8h)

Cream powder; isolated yield: 88% (0.40 g), mp 193–195; 
IR (KBr, υ): 3371, 1462, 776 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.62 (s, 1H, NH), 7.98 (s, 1H, Triazole), 
7.44 (d, J = 7.7 Hz, 2H, H3, H5), 7.41–7.35 (m, 4H, Ph), 
7.33–7.20 (m, 8H, Ph, H2, H6), 5.57 (s, 2H,  CH2), 4.41 
(s, 2H, S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 144.32, 
139.52, 137.77, 135.42, 135.29, 133.24, 131.12, 130.20, 
130.18, 129.13, 129.13, 128.64, 128.24, 128.13, 128.12, 
127.49, 127.07, 127.04, 124.02, 123.98, 52.39  (SCH2), 
28.18  (CH2). Anal. Calcd for  C25H20ClN5S: C, 65.56; H, 
4.40; N, 15.29. Found: C, 65.64; H, 4.27; N, 15.16.

1‑(2‑Bromo‑benzyl)‑4‑(4,5‑diphenyl‑1H‑imidazol‑2‑ylsulfan
ylmethyl)‑1H‑[1,2,3]triazole (8i)

Cream powder; isolated yield: 93% (0.47 g), mp 180–182; 
IR (KBr, υ): 3379, 1468, 773 cm−1; 1H NMR (500 MHz, 
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DMSO-d6) δ 12.65 (s, 1H, NH), 7.94 (s, 1H, Triazole), 7.64 
(dd, J = 11.5, 9.8 Hz, 1H, H3), 7.47–7.21 (m, 12H, Ph, H4, 
H5), 7.11 (d, J = 6.9 Hz, 1H, H6), 5.62 (s, 2H,  CH2), 4.42 
(s, 2H, S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 143.75, 
139.15, 137.33, 135.04, 134.77, 132.84, 130.63, 130.38, 
130.34, 128.64, 128.18, 128.16, 127.76, 127.64, 127.06, 
126.59, 123.87, 122.83, 52.90  (SCH2), 27.60  (CH2). Anal. 
Calcd for  C25H20BrN5S: C, 59.76; H, 4.01; N, 13.94. Found: 
C, 59.53; H, 4.13; N, 14.05.

1‑(3‑Bromo‑benzyl)‑4‑(4,5‑diphenyl‑1H‑imidazol‑2‑ylsulfan
ylmethyl)‑1H‑[1,2,3]triazole (8j)

Cream powder; isolated yield: 94% (0.47 g), mp 174-176; 
IR (KBr, υ): 3379, 1468, 770 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.64 (s, 1H, NH), 8.06 (s, 1H, Triazole), 7.54 
(d, J = 1.9 Hz, 1H, H4), 7.52–7.49 (m, 1H, H2), 7.46 (d, 
J = 7.3 Hz, 2H, Ph), 7.41–7.35 (m, 5H, Ph), 7.34–7.31 (m, 
1H, Ph), 7.30–7.26 (m, 2H, Ph), 7.24 (d, J = 5.1 Hz, 2H, 
H5, H6), 5.59 (s, 2H,  CH2), 4.44 (s, 2H, S-CH2); 13C NMR 
(125 MHz, DMSO-d6) δ 148.27, 143.88, 139.17, 138.56, 
137.27, 134.82, 130.97, 130.88, 130.71, 129.57, 128.89, 
128.73, 128.64, 128.26, 128.17, 127.96, 127.76, 127.63, 
127.04, 126.93, 126.57, 123.64, 121.81, 51.92  (SCH2), 
27.63  (CH2). Anal. Calcd for  C25H20BrN5S: C, 59.76; H, 
4.01; N, 13.94. Found: C, 59.83; H, 4.11; N, 13.84.

1‑(4‑Bromo‑benzyl)‑4‑(4,5‑diphenyl‑1H‑imidazol‑2‑ylsulfan
ylmethyl)‑1H‑[1,2,3]triazole (8k)

Cream powder; isolated yield: 92% (0.46 g), mp 197–199; 
IR (KBr, υ): 3379, 1462, 774 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.64 (s, 1H, NH), 7.99 (s, 1H, Triazole), 
7.45 (t, J = 7.5 Hz, 4H, Ph, H2, H6), 7.41–7.35 (m, 4H, 
Ph), 7.33 (d, J = 6.5 Hz, 1H, Ph), 7.29 (t, J = 7.4 Hz, 2H, 
Ph), 7.23 (d, J = 7.1 Hz, 1H, Ph), 7.19 (d, J = 8.2 Hz, 2H, 
H2, H6), 5.55 (s, 2H,  CH2), 4.42 (s, 2H, S-CH2); 13C NMR 
(125 MHz, DMSO-d6) δ 148.28, 143.87, 139.06, 138.01, 
137.32, 135.36, 134.83, 131.60, 130.66, 130.02, 129.59, 
128.66, 128.28, 128.18, 127.78, 127.67, 127.03, 126.60, 
123.56, 121.34, 52.00 (S-CH2), 27.74  (CH2). Anal. Calcd 
for  C25H20BrN5S: C, 59.76; H, 4.01; N, 13.94. Found: C, 
59.62; H, 3.96; N, 14.08.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(2‑nitro
‑benzyl)‑1H‑[1,2,3]triazole (8l)

Cream powder; isolated yield: 86% (0.40 g), mp 175–177; 
IR (KBr, υ): 3378, 1462, 776 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.65 (s, 1H, NH), 8.11 (s, 1H, Triazole), 8.02 
(s, 1H, H3), 7.64–7.51 (m, 2H, H4, H5), 7.48–7.20 (m, 10H, 
Ph), 7.01–6.88 (m, 1H, H6), 5.95 (s, 2H,  CH2), 4.49 (s, 2H, 
S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 147.43, 143.94, 

139.04, 134.22, 130.87, 129.79, 129.49, 128.61, 128.16, 
127.74, 127.01, 126.52, 124.97, 124.23, 49.89 (S-CH2), 
27.67  (CH2). Anal. Calcd for  C25H20N6O2S: C, 64.09; H, 
4.30; N, 17.94. Found: C, 64.17; H, 4.51; N, 17.87.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(3‑nitro
‑benzyl)‑1H‑[1,2,3]triazole (8m)

Cream powder; isolated yield: 95% (0.44 g), mp 168-170; 
IR (KBr, υ): 3378, 1462, 771 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.63 (s, 1H, NH), 8.23 (s, 1H, H2), 8.15 
(d, J = 8.1, 2.3 Hz, 1H, H4), 8.11 (s, 1H, Triazole), 7.69 
(d, J = 7.7 Hz, 1H, H6), 7.57 (t, J = 8.0, 2.1 Hz, 1H, H5), 
7.47–7.20 (m, 10H, Ph), 5.76 (s, 2H,  CH2), 4.46 (s, 2H, 
S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 147.80, 144.01, 
139.15, 138.04, 137.32, 134.83, 134.57, 130.66, 130.29, 
128.63, 128.14, 127.74, 127.62, 127.01, 126.72, 126.56, 
123.77, 123.05, 122.80, 51.73 (S-CH2), 27.64  (CH2). Anal. 
Calcd for  C25H20N6O2S: C, 64.09; H, 4.30; N, 17.94. Found: 
C, 63.92; H, 4.22; N, 17.85.

4‑(4,5‑Diphenyl‑1H‑imidazol‑2‑ylsulfanylmethyl)‑1‑(4‑nitro
‑benzyl)‑1H‑[1,2,3]triazole (8n)

Cream powder; isolated yield: 89% (0.42 g), mp 189–191; 
IR (KBr, υ): 3375, 1461, 775 cm−1; 1H NMR (500 MHz, 
DMSO-d6) δ 12.63 (s, 1H, NH), 8.10 (d, J = 8.7 Hz, 2H, 
H5, H3), 8.04 (s, 1H, Triazole), 7.43 (dt, J = 8.7, 2.7 Hz, 
4H, Ph), 7.39–7.29 (m, 5H, Ph), 7.27 (t, J = 7.5 Hz, 2H, 
H2, H6), 7.23–7.17 (m, 1H, Ph), 5.75 (s, 2H,  CH2), 4.43 
(s, 2H, S-CH2); 13C NMR (125 MHz, DMSO-d6) δ 147.57, 
144.50, 143.90, 139.41, 137.79, 135.25, 131.09, 129.26, 
129.18, 129.10, 128.62, 128.22, 128.14, 127.45, 127.06, 
124.39, 124.26, 52.28 (S-CH2), 28.21  (CH2). Anal. Calcd 
for  C25H20N6O2S: C, 64.09; H, 4.30; N, 17.94. Found: C, 
63.95; H, 4.43; N, 17.81.

Biological assays

In vitro α‑glucosidase inhibition assay

Enzyme (α-glucosidase from Saccharomyces cerevisiae, 
EC3.2.1.20, 20 U/mg) and substrate (p-nitrophenyl glu-
copyranoside) were prepared from Sigma-Aldrich. An 
appropriate concentration of enzyme was prepared by potas-
sium phosphate buffer (pH 6.8, 50 mM), and the 4,5-dia-
rylimidazole-1,2,3-triazole hybrids 8a–n were dissolved 
in DMSO (10% final concentration). The enzyme (20 μL), 
different concentrations of the title compounds (20 μL), 
and potassium phosphate buffer (135 μL) were added to a 
96-well plate and incubated at 37 °C for 10 min [17–25]. 
Then, a substrate (25 μL, 4 mM) was added to each well of 
the plate and allowed to be incubated at 37 °C for 20 min. 
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Finally, the change in the absorbance was measured at 
405 nm by using the Gen5 spectrophotometer (Power wave 
xs2, BioTek, America). DMSO as control and acarbose as 
the standard inhibitor were used. The percentage of inhibi-
tion for the synthesized compounds 8a–n, control, and acar-
bose was calculated by using the following formula:

The  IC50 values of the tested agents were determined 
from the nonlinear regression curve using the Logit method.

Kinetic study

The α-glucosidase solution (1 U/mL, 20 μL) was incubated 
with different concentrations of the compound 8g (0, 45, 60, 
and 85 µM) for 15 min at 30 °C. The enzymatic reaction was 
initiated by adding various concentrations of p-nitrophenyl 
glucopyranoside as substrate (1–10 mM). Then, change 
in the absorbance was determined for 20 min at 405 nm 
by using the spectrophotometer (Gen5, Power wave xs2, 
BioTek, America).

Docking study

Building the homology model of α-glucosidase and dock-
ing studies of the selected compounds 8d–e and 8g–i in the 
active site of this enzyme were conducted using the previ-
ously described method [25].

In silico ADME/T study

In silico ADME-Tox study of the most potent compounds 
8b, 8d, 8g, and 8i was performed using the PreADMET 
online server (http://pread met.bmdrc .org/) [26].
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