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A B S T R A C T

Pesticides exposure can have harmful effects on human health. The liver is the most common organ of pesticides
toxicity due to its major metabolic activity. The molecular mechanism of pesticides effect is complex and is
controlled by gene regulatory networks. All components of regulatory networks are controlled by transcription
factors and other regulatory elements. Therefore, identification of key regulators through system biology ap-
proaches and high‐throughput techniques can help to provide comprehensive insights into molecular mechan-
isms of the pesticide effect. In the current study, a microarray data-set was used to potentially identify molecular
mechanisms that regulate gene expression profile of rat hepatocyte cell lines in response to pesticides exposure.
Results showed that the number of differentially expressed genes (DEGs) and differentially expressed tran-
scription factors (DE-TFs) were dramatically different among pesticides tested. Results also revealed 205
common DEGs and 11 DE-TFs among pesticides tested. Additionally, we found that six DE-TFs (CREB1, CTNNB1,
PPARG, SP1, SRF and STAT3) had the highest number of interactions with other DEGs and acted as the key
regulatory genes. The results of this study revealed regulator genes that have the key functions in response to
pesticides toxicity in rat liver, which can provide the basis for future studies. Furthermore, these regulatory
genes can be used as toxicity biomarkers to improve diagnosis and prognosis.

1. Introduction

The environmental occurrence of dangerous chemicals such as
pesticides has raised a wide-spread disputation recently (Bao et al.,
2015). Protecting human health from pesticides, conservative sub-
stances added into esculents, drinking water and toxic air pollutants is a
global mission (Damalas and Koutroubas, 2016). Contaminants are
propagating in the environment and human organs, leading to long-
term diseases just after their first identification (Gavrilescu et al.,
2015). The accumulation of pesticides in the organisms and the long-
term and severe effects of them, is a well-studied phenomenon, though,
given the wide range of the variables of interest, it is complicated to
define the severe impacts and disease outcomes (Iida and Takemoto,

2018).
The real challenge, here, is the accurate evaluation of the dangerous

impacts which pesticides and other chemicals may pose to the human
body and other organisms (Collins et al., 2008; Judson et al., 2009; Wei
et al., 2014). Traditional methods (experimental methods) for evalua-
tion of chemicals are often time-consuming and very inefficient. Ac-
cordingly, along with experimental methods, other available methods
should be considered (Brown, 2003; Wei et al., 2014). Experimental
evaluation of all available chemicals is hard and the majority of them
are not yet tested. Thus, developing fast, high-performance and efficient
methods is necessary to predict the potential risks of chemicals.

The availability of omics data (genomics, transcriptomics, pro-
teomics, metabolomics) as well as the development of modern tools and
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annotation techniques has leveraged the gene expression analyses to
clarify how biological systems are affected by the toxicity mechanism of
the chemical compounds (Hasan et al., 2019). These technologies are
providing the new field “toxicogenomics”, which is a combination of
toxicology and genomics (Aardema and MacGregor, 2002). Tox-
icogenomics endeavors to elucidate the involvement of the genome in
response to environmental toxicants (Aardema and MacGregor, 2002;
Hasan et al., 2019; Ulrich and Friend, 2002). Toxicants induce patho-
logical changes in the relevant organs and subsequently in the expres-
sion of genes, protein synthesis and metabolism. Detecting the changes
made by toxicants is possible by evaluating changes in gene expression
profile (Hasan et al., 2019; Uehara et al., 2008; Woods et al., 2007).
Recent advances in molecular genetics and genomics have facilitated
the identification of multiple genes that may regulate the response to
the chemical exposures directly or indirectly. Another knowledge gap in
the chemical toxicology is related to regulatory roles of transcription
factors (TFs), which form regulatory networks and the global tran-
scription response (Zhernovkov et al., 2019). TFs are one of the most
important protein groups in response to chemical exposure (Corton
et al., 2019; Iida and Takemoto, 2018; Schüttler et al., 2017). TF genes
are found throughout the genome of human and other organisms and
playing a significant role in the gene regulatory networks (Ignatieva
et al., 2015).

Toxicogenomics provides the ability of a complete analysis of the
changes occurred in the related organs and tissues by the external sti-
mulus (Hasan et al., 2019; Igarashi et al., 2014). The toxicogenomic
experiments such as microarray and RNA-seq lead to a huge gene ex-
pression data. Analysis of such big data is a very sophisticated task and
sometimes captures unreliable results that are not robust to the iden-
tification of toxicity-responsive genes. Therefore, the analysis of
pathway or molecular network-based gene expression data enhances
the predictive power and captures more reliable results (Hardt et al.,
2016; Hasan et al., 2018; Kim, 2017). Gene regulatory network analysis
has provided special computational tools for interpreting huge volumes
of data e.g., from disease-gene associations and promoted our

understandings of the interactions that take place in biological pro-
cesses (Goh et al., 2007; Reyes-Palomares et al., 2013). Indeed, the gene
regulatory network approach is used to capture complete information
about the interactions between contaminants and biological functions
(Iida and Takemoto, 2018). Previous studies have demonstrated the
power of system biology approaches to find interactions between con-
taminants and biological functions. Such approaches were used to
identify biomarkers in cancer and other diseases (Chen et al., 2014).
Darabos et al. (2015) studied the relationship between biological
pathways and environmental pollutants. They aimed to identify the
biological pathways that may be affected or even disrupted while ex-
posing to environmental contaminants (Darabos et al., 2015). Adverse
outcome pathways for chemicals were interpreted from high-
throughput transcriptomic data-sets in two separate studies (Perkins
et al., 2011; Villeneuve et al., 2014). In the other study, key tran-
scription regulators associated with nanomaterial induced toxicity were
identified through computational methods (Zhernovkov et al., 2019).

The aim of this study is, firstly, to global investigation of tran-
scriptome alterations in response to different pesticides, as well as, to
identify genes that respond directly to pesticides. A second aim is to
identification of common key TFs that regulate responses to pesticides.
We compared gene expression profile of rat hepatocyte cell lines under
seven pesticide exposure, including Atrazine, Chlorpyrifos, DDT,
Methoxychlor, Paraquat, Permethrin and Toxaphene to evaluate tran-
scriptome alterations and identify common genes among all samples.
Our approach is as follows: first, each sample is re-analyzed separately;
in this manner, we could identify the differentially expressed genes
(DEGs). Then we determine the DEGs-overlap among all samples. Our
focus in the second approach is on the identification of core gene sets
that may regulate the pesticides exposure responses. The character-
ization of DEGs is done through functional enrichment analysis of
metabolic pathways and TF families. Additionally, to identify hub genes
or key TFs, we performed a system biology analysis and provided more
accurate insight into the associated mechanisms of the toxic responses.

Table 1
The brief information of studied pesticides.

Name CAS Registry Number MeSH® ID Chemical Structure Chemical class Pesticide type

Atrazine 1912-24-9 D001280 Triazine Herbicide

Chlorpyrifos 2921-88-2 D004390 Organophosphate Insecticide
Wormicide

DDT 50-29-3 D003634 Organochloride Insecticide

Methoxychlor 72-43-5 D008731 Organochloride Insecticide

Paraquat 4685-14-7 D010269 Bipyridyl Herbicide

Permethrin 52645-53-1 D026023 Pyrethrin Insecticide

Toxaphene 8001-35-2 D014112 Organochloride Insecticide
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2. Material and methods

2.1. Data collection and expression analysis

In this study, a microarray data-set (GEO accession number
GSE19662), including 531 samples of chemical treated rat hepatocyte
cell lines and vehicle control, was selected for expression analysis. This
data-set obtained from a genome-wide expression analysis of rat

hepatocyte cell lines under chemical exposure (Deng et al., 2010). Gene
expression analysis has been done on Agilent-014879 Whole Rat
Genome Microarray platform (GPL4135) (Agilent Technologies, Palo
Alto, USA). We analyzed the gene expression profile of rat hepatocyte
cell lines under seven pesticide treatments, including Atrazine, Chlor-
pyrifos, DDT, Methoxychlor, Paraquat, Permethrin and Toxaphene.
Pesticides information is summarized in Table 1.

The NCBI GEO2R tool was used to analyze the data-set (Barrett

Fig. 1. Gene expression analysis and identification of DEGs under pesticide treatments. (a) DEGs were detected under pesticide treatments. The numbers on top of
each bar show the number of up‐ (red color) or down-regulated (green color). (b) Venn diagram of overlapping DEGs among pesticide treatments. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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et al., 2012). GEO2R utilizes R packages to analyze normalized samples
and identifies DEGs using statistical tests. We have compared pesticide-
treated samples versus control samples to detect DEGs. After compar-
ison, we have filtered results based on significance (p-value < 0.01)
and absolute |Log 2 (fold change)| ≥ 1. The resulted genes were con-
sidered to be significantly differentially expressed under the pesticide
treatments. The duplicate values, ambiguous names and missing gene
symbols were manually removed from DEGs. By comparing the final
unique lists of DEGs, common DEGs among pesticides were identified
and visualized in a Venn diagram. The log 2 FC values were used to
cluster of DEGs in all samples. The heatmap3 package of R was used to
cluster and visualize DEGs (Zhao et al., 2014).

2.2. Identification of pesticide-related TFs in the list of DEGs

TFs regulate sets of genes in the cells under different conditions and
it is possible that different gene sets share common TFs. Therefore,
Tfcheckpoint server was used to identify TFs in DEG lists of different
pesticides (Chawla et al., 2013). The TFs in TFcheckpoint server are
manually evaluated for experimental evidence supporting their role in
regulation of RNA polymerase II and DNA binding activity (Chawla
et al., 2013). Only TFs with these two criteria were considered for
further analysis. Furthermore, using the Enrichr tool, the differential
expressed TFs (DE-TFs) that are involved in the regulation of the DEGs
were identified (Kuleshov et al., 2016; Lachmann et al., 2010). The
DEGs list was imported to the Enrichr tool and predicted TFs and their
target genes were obtained. The results with a p-value < 0.01 were
selected and their presence in the DEGs list was determined. This
analysis created a list of DE‐TFs and their target genes for each pesti-
cide.

2.3. Ontology analysis, pathway and disease enrichment of DEGs

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2016) and Comparative Toxicogenomics Database (CTD) (Davis et al.,

2018) were used to classify the DEGs among different biological pro-
cesses, molecular functions, cellular components, pathways and dis-
eases. Results with p-value < 0.01 were considered significant and
selected for the analysis.

2.4. Gene regulatory network analysis

The results of Enrichr tool (TFs and their target genes) were used to
construct gene regulatory network. Networks were constructed based
on the interaction between TFs and target genes. Individual networks
for each pesticide were constructed and analyzed by Cytoscape 3.7.1
(Franz et al., 2015). Cytohubba plug‐in of Cytoscape was used to detect
important genes in the networks (Chin et al., 2014). Cytohubba plug‐in
uses specific methods such as betweenness, bottleneck, closeness,
clustering coefficient, degree, dmnc, eccentricity, epc, mcc, mnc, radi-
ality and stress to rank nodes in networks (Chin et al., 2014). Based on
ranking by 12 different methods, common hub genes for each pesticide
were detected. Common regulatory network among pesticides was
constructed using results of Cytohubba ranking.

2.5. Organ-specific expression analysis of identified hub genes

Information on identified hub genes was obtained from rat genes
database of NCBI. The RPKM values of hub genes in rat adrenal, brain,
heart, kidney, liver, lung, muscle, spleen, testis, thymus and uterus
organs were retrieved from rat genes database of NCBI. The mean of
RPKM values in each organ was considered as organ-specific expres-
sion.

2.6. Validation of the results

To validate our findings, we have used of batch query tool in CTD
database (Davis et al., 2018). The batch query tool uses a text mining
algorithm to provide search results. Identified hub genes were sub-
mitted to the batch query tool and interacted pesticides were selected.

Fig. 2. Heat map of hierarchical clustering of common DEGs among pesticide treatments. The range of log 2 fold change values is from −5 to 5 to enhance
visualization.
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Then, expression trend (up- and down-regulation) of hub genes were
determined under treatment of selected pesticides.

3. Results

3.1. Identification of DEGs

The gene expression pattern alterations were observed for many
genes in rat hepatocyte cell lines under chemical treatment (Fig. 1a). In
Atrazine treatment, 1,141 DEGs were identified. For Chlorpyrifos
treatment, 1,617 DEGs were observed. DDT treatment showed 3,588
DEGs. Methoxychlor treatment resulted in 5,643 DEGs. In Paraquat

treatment, 1,658 DEGs were observed. Permethrin treatment induced
1,948 DEGs and Toxaphene treatment resulted in 2,724 DEGs (Fig. 1a).
The highest and the lowest number of DEGs were observed for Meth-
oxychlor (5,643 DEGs) and Atrazine (1,141 DEGs), respectively
(Fig. 1a). Interestingly, up-regulated DEGs were dominant in all pesti-
cide treatments, except for the Atrazine. The highest and the lowest
number of up-regulated DEGs were observed for Methoxychlor (5,130
DEGs) and Atrazine (529 DEGs), respectively (Fig. 1a). DDT showed the
highest number of down-regulated DEGs and Paraquat had the lowest
number of down-regulated DEGs (Fig. 1a). Venn diagram was used to
determine common and specific DEGs among different pesticides
(Fig. 1b). Venn diagram showed 205 common DEGs among pesticides.

Fig. 3. Identification of DE-TFs under pesticide treatments. (a) DE-TFs were detected under pesticide treatments. The numbers on top of each bar show the number of
up‐ (red color) or down-regulated (green color). (b) Venn diagram of overlapping DE-TFs among pesticide treatments. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Methoxychlor exhibited the highest number of specific DEGs (2,840
DEGs), while Chlorpyrifos had the lowest number of specific DEGs (78
DEGs) (Fig. 1b).

Hierarchical clustering of common DEGs showed two distinct
groups of pesticides (Fig. 2). Toxaphene, Methoxychlor and Permethrin
was clustered in one group and Atrazine, DDT, Paraquat and Chlor-
pyrifos clustered in other group. Two herbicides (Atrazine and Para-
quat) were clustered together in one group (Fig. 2).

3.2. Identification of TFs and DE-TFs

Search for TFs in the DEG list of pesticides showed a different
number of TFs (Fig. 3a). In Atrazine treatment, 67 DE-TFs were iden-
tified. For Chlorpyrifos treatment, 60 DE-TFs were observed. DDT
treatment showed 124 DE-TFs. Methoxychlor treatment resulted in 268
DE-TFs. In Paraquat treatment, 53 DE-TFs were observed. Permethrin
treatment induced 93 DE-TFs and Toxaphene treatment resulted in 115
DE-TFs (Fig. 3a). The highest and the lowest number of DE-TFs were
observed for Methoxychlor (268 DE-TFs) and Paraquat (53 DE-TFs),
respectively (Fig. 3a). The up-regulated DE-TFs were dominant in DDT,
Methoxychlor, Paraquat and permethrin treatments, while down-regu-
lated DE-TFs were dominant in Atrazine, Chlorpyrifos, Permethrin and
Toxaphene treatments (Fig. 3a). The highest and the lowest number of
up-regulated DE-TFs were observed for Methoxychlor (233 DE-TFs) and
Atrazine and Chlorpyrifos together (23 DE-TFs), respectively (Fig. 3a).
Toxaphene showed the highest number of down-regulated DE-TFs and
Paraquat had the lowest number of down-regulated DE-TFs (Fig. 3a).
Venn diagram was used to determine common and specific DE-TFs
among different pesticides (Fig. 3b). Venn diagram showed 11 common
DE-TFs among pesticides. Methoxychlor exhibited the highest number
of specific DE-TFs (147 DEGs), while Paraquat had the lowest number

of specific DE-TFs (3 DEGs) (Fig. 3b). Hierarchical clustering of
common DE-TFs showed four distinct groups of pesticides (Fig. 4). The
Chlorpyrifos and Paraquat, Toxaphene and Permethrin, Atrazine and
DDT were clustered in three distinct groups, while Methoxychlor was
separately clustered in one group. Two herbicides (Atrazine and Para-
quat) were clustered in different group (Fig. 4).

3.3. Ontology analysis, pathway and disease enrichment of DEGs

Gene ontology analysis classified common DEGs into three groups of
biological processes, cellular components and molecular functions
(Fig. 5). In biological processes group, most of the DEGs were cate-
gorized in organelle organization, cell cycle, cell cycle process, mitotic
cell cycle and regulation of cell cycle. The dominant terms in cellular
components group were cytosol, chromosome, chromosomal part, mi-
crotubule cytoskeleton and chromosomal region while in molecular
functions group, catalytic activity, ion binding and enzyme regulator
activity were the top enriched terms (Fig. 5). The KEGG pathway
analysis showed that the DEGs were significantly enriched in the me-
tabolic pathways and pathways in cancer (Fig. 6). The disease enrich-
ment analysis showed that cancers, digestive system diseases, ur-
ogenital diseases, genetic diseases, endocrine system diseases,
musculoskeletal diseases and skin diseases are the most related diseases
with chemical treatments (Table 2).

3.4. Gene regulatory network analysis

Gene regulatory network analysis was performed on DEGs, to ex-
plore common regulatory network among studied pesticides. Based on
ranking results in Cytohubba plug-in, six common hub genes were
identified among pesticides. These six hub genes (CREB1, CTNNB1,

Fig. 4. Heat map of hierarchical clustering of common DE-TFs among pesticide treatments. The range of log 2 fold change values is from −3 to 3 to enhance
visualization.
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PPARG, SP1, SRF and STAT3) had the highest number of interactions
with other DEGs (Fig. 7). Further analyses showed that all identified
hub genes were DE-TFs. Two of six hub genes (SRF and STAT3) were
down-regulated, while four hub genes (CREB1, CTNNB1, PPARG and
SP1) were up-regulated (Fig. 4). Interestingly, all hub genes showed the
same expression trend among pesticide treatments (Fig. 4).

3.5. Organ-specific expression analysis of identified hub genes

The expression analysis of hub genes showed differential expression
among rat organs. Results showed that CTNNB1 had the highest and
PPARG had the lowest expression level among analyzed tissues.
Information and organ-specific expression of six identified hub genes
(CREB1, CTNNB1, PPARG, SP1, SRF and STAT3) are shown in Table 3
and Fig. 8.

3.6. Validation of the results by different pesticides

To validate the role of six identified hub genes under pesticide
treatments, we have used of batch query tool in CTD database (Davis
et al., 2018). Fig. 9 contains the results obtained from microarray and
text mining studies alongside each other. Interestingly, a relatively si-
milar trend of gene expression was observed for the hub genes under
pesticide treatment. These results could approve the specific role of
these hub genes.

4. Discussion

In the present study, microarray data-sets of rat hepatocyte cell lines
under seven pesticide treatments, including Atrazine, Chlorpyrifos,
DDT, Methoxychlor, Paraquat, Permethrin and Toxaphene were ana-
lyzed through system biology methods. At first, microarray data-sets of

Fig. 5. GO enrichment analysis of common DEGs. The Y-axis indicates the enriched GO-terms and the X-axis indicates the significance level based on -log (FDR). The
green, blue, and pink color ranges indicate biological process, cellular components, and molecular function GO-terms, respectively. Circles’ size shows the number of
enriched genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S.S. Sohrabi, et al. Gene 739 (2020) 144508

7



each pesticide were individually analyzed and common DEGs and DE-
TFs among seven pesticides were selected. Then, gene regulatory net-
work was constructed and common hub genes were identified.
Functional annotation was performed to determine the likely roles of
hub genes in diseases.

Interestingly, the number of identified DEGs were dramatically
different among the pesticides. The highest and the lowest number of
DEGs were observed for Methoxychlor and Atrazine pesticides, re-
spectively. Due to more changes in the transcriptome profile,
Methoxychlor and DDT were more toxic than other studied pesticides.
In contrast, Atrazine induced a little change in the transcriptome profile
and had the least toxicity (Fig. 1a). In general, insecticides induced
more DEGs than the herbicides in the rat hepatocyte cell lines. Among
insecticides, organochloride insecticides changed more DEGs than other
insecticides (Fig. 1a). A similar trend was observed for DE-TFs in the rat
hepatocyte cell lines exposed to pesticides (Fig. 3a). These findings
highlight different mode of action and the nature of these pesticides. It
has been well documented that the toxicity of pesticides is varied due to
their chemical structures and their mode of actions (Cao et al., 2018;
Hamadache et al., 2016; Kaushik and Kaushik, 2007; Mesnage et al.,
2018; Zahouily et al., 2002).

We found 205 overlapping genes among DEGs obtained from each
pesticide treatment that reflects the overlap between affected processes
by these pesticides (Fig. 1b). Gene ontology analysis of the common
DEGs revealed that organelle organization and cell cycle processes
comprised the highest number of genes. This indicates the genotoxicity
effects of pesticides on cell cycle processes. Results of a genotoxicity

study showed that cypermethrin and chlorpyrifos insecticides cause cell
cycle perturbations and apoptosis in mouse bone marrow cells
(Chauhan et al., 2016). In the study conducted by Marc et al., gly-
phosate-based pesticides affect cell cycle regulation and induced cell
cycle dysfunction in sea urchin (Sphaerechinus granularis) eggs (Marc
et al., 2004).

Functional annotation of common DEGs showed that these genes are
notably involved in cancers and digestive system diseases (Table 2).
Metabolic pathway analysis using KEGG database confirmed role of
common DEGs in cancers (Fig. 6). Relation between pesticides exposure
and cancers have been reported in many studies. Glyphosate herbicide
act as an estrogen agonist in human breast cancer and can stimulate the
growth of cancer cell lines at the same concentrations to estrogen
(Hokanson et al., 2007; Mesnage et al., 2015; Thongprakaisang et al.,
2013). Results of a long-term study revealed stimulating effects of four
organocholride (1,3-dichloropropene, captafol, penta-
chloronitrobenzene and dieldrin) insecticides on pancreatic cancer
(Clary and Ritz, 2003). Exposure to endosulfan pesticide induces genes
that are related to human diseases, including liver cancer, prostate
cancer and leukemia (Xu et al., 2016).

We have detected the six hub genes (CREB1, CTNNB1, PPARG, SP1,
SRF and STAT3) through network analysis that were common in all
studied pesticides. All of these hub genes were DE-TFs and had the
highest number of interactions with other DEGs. It seems that these hub
genes form a key regulatory network to regulate pesticide induced
genes (Fig. 7). The text mining showed a relatively similar trend of gene
expression for the hub genes under other pesticide treatment. These
results could approve the specific role of these hub genes (Fig. 9).

The first hub gene, CREB1 transcription factor, is a member of the
CREB family of leucine zipper (bZIP) transcription factors (Lonze and
Ginty, 2002). The rat CREB1 has a complex gene structure with 13
exons that result in 10 isoforms with different regulatory activity
(Ortega-Martínez, 2015).

The gene expression analysis showed relatively low expression level
for CREB1 gene among different rat organs. The highest expression
level of CREB1 was in thymus, while the lowest expression level was
found in the liver (Fig. 8). Like other bZIP transcription factors, CREB1
contains a leucine zipper domain that helps dimerization and a C-

Fig. 6. Metabolic pathway analysis of common DEGs. The Y-axis represents the enriched KEGG pathway names, and the X-axis represents the significance level based
on -log (FDR). Circles’ size shows the number of enriched genes.

Table 2
Disease enrichment analysis of common DEGs.

Disease Enriched DEGs FDR

Cancer 80 5.28E−07
Digestive system disease 63 5.85E−07
Urogenital disease 30 1.88E−05
Genetic disease 26 3.51E−03
Endocrine system disease 22 1.65E−05
Musculoskeletal disease 22 8.82E−04
Skin disease 20 1.16E−03
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terminal basic domain for DNA binding. The CREB1forms a homodimer
and binds to the cAMP-responsive element after phosphorylation at a
conserved serine (Ser-133). This protein acts through transcription of
genes in response to hormonal stimulation of the cAMP pathway
(Borrelli et al., 1992; Lonze and Ginty, 2002; Mayr and Montminy,
2001; Zhang et al., 2005). The CREB1 is activated in response to a wide
range of environmental and physiological stimuli. The CREB1 regulates
proliferation, survival and differentiation of cells, inflammatory activ-
ities, protecting against oxidative-stress mediated cell death and anti-
apoptotic activities (Lee et al., 2009; Sadamoto et al., 2010; Wen et al.,
2010).

CTNNB1, also known as β-catenin, is another identified hub gene
belongs to the catenin family. The CTNNB1 is a dual function protein
involved in the regulation of transcription and cell–cell adhesion pro-
cess. Like CREB1, rat CTNNB1 has a complex gene structure with 18
exons and and only 1 isoform. The CTNNB1 is widely expressed in rat
organs (Fig. 8). The CTNNB1 has broad functions in intracellular signal
transducer in the Wnt signaling pathway and cadherin-mediated

cell–cell adhesion (Abe and Takeichi, 2008; MacDonald et al., 2009;
McCrea and Gu, 2010). The CTNNB1, as a component of adherens
junctions, can regulate adhesion between cells and cell growth
(Brembeck et al., 2006). The CTNNB1 also can directly induces by
diffusible extracellular substances and changes the transcription of
specific genes (Brembeck et al., 2006; Monga, 2015). Due to its broad
functions, CTNNB1 plays a vital role in directing several developmental
processes and in regulation of physiological regeneration processes
(Brembeck et al., 2006; Haegel et al., 1995; Monga, 2015; Schaefer and
Peifer, 2019). Alterations in the localization or expression level and
lack of function of CTNNB1 are related to many diseases such as cancers
and various forms of heart disorders (Morin, 1999).

PPARG, also called peroxisome proliferator-activated receptor
gamma, another identified hub gene belongs to the family of peroxi-
some proliferation-activated receptors that are involved in a wide
variety of regulatory functions (Desvergne and Wahli, 1999). The rat
PPARG has a complex gene structure with 10 exons that result in 2
isoforms. The gene expression analysis showed relatively low

Fig. 7. Gene regulatory networks under pesticide treatments. (a) Atrazine treatment. (b) Chlorpyrifos treatment. (c) DDT treatment. (d) Methoxycholor treatment. (e)
Paraquat treatment. (f) Permethrin treatment. (g) Toxaphene treatment. (h) Common gene regulatory network. Red circles are up-regulated and blue circles are
down-regulated hub DE-TF genes. Green and black circles are other DEGs in gene regulatory networks. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Information of six identified hub DE-TF genes.

Gene symbol Gene ID Full name Functional group Cellular localization

CREB1 81646 CAMP responsive element binding protein 1 Transcription factor Nuclear
CTNNB1 84353 Catenin (cadherin associated protein) beta 1 Transcription factor/signalling Cytoplasmic/Nuclear
PPARG 25664 Peroxisome proliferator activated receptor gamma Transcription factor Nuclear
SP1 24790 Specificity protein 1 Transcription factor Nuclear
SRF 501099 Serum response factor Transcription factor Nuclear
STAT3 25125 Signal transducer and activator of transcription 3 Transcription factor Cytoplasmic/Nuclear
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expression level for PPARG gene among different rat organs. The
highest expression level of PPARG was in thymus and adrenal, while the
lowest expression level was found in the liver and brain (Fig. 8). The
PPARG is a macronutrient metabolism regulator and regulates pro-
cesses such as glucose metabolism, lipid metabolism, fatty acid storage,
adipogenesis, adipose tissue formation, cell proliferation and apoptosis
(Braissant et al., 1996; Chinetti et al., 2000; Grygiel-Górniak, 2014;
Janani and Kumari 2015). PPARG protects non-adipose tissues (such as
liver and skeletal muscle) against excessive lipid overload and main-
tains their normal function (Kintscher and Law, 2005). Apart from
metabolism regulatory activity, PPARG is also important in inflamma-
tion and regulates targets relevant to inflammation in endothelial cells
(Marx et al., 1999).

SP1, also known as specificity protein 1, another identified hub
gene, is a member of the SP transcription factor family. Members of this
family belong to zinc finger transcription factors (Black et al., 2001;
Safe and Abdelrahim, 2005; Suske et al., 2005). The rat SP1 has six
exons and only one isoform. The highest expression level of SP1 was
observed in the thymus, while the lowest expression level was found in
the brain (Fig. 8). The SP1 undergoes various post-translational mod-
ifications such as glycosylation and phosphorylation that significantly
modulate its activity. These modifications determine the activatory or
inhibitory properties of the SP1 transcription factor (Chang and Hung,
2012; Waby et al., 2008). The SP1 transcription factor binds to GC-rich
motifs of many gene promoters. Investigations have revealed that SP1 is
involved in many cellular processes, including cell proliferation and
differentiation, apoptosis, chromatin remodeling, DNA damage and
immune responses (Beishline and Azizkhan-Clifford, 2015; Black et al.,
2001; Chang and Hung, 2012; Vizcaíno et al., 2015).

SRF, also known as serum response factor, another identified hub
gene, is a member of the MADS-box transcription factors superfamily
(Shore and Sharrocks, 1995). The rat SRF has 8 exons and 2 isoforms.
The highest expression level of SRF was observed in heart, while the
lowest expression level was found in the liver (Fig. 8). The SRF binds to
the serum response element and induces expression of target genes
(Treisman, 1992). This transcription factor regulates many immediate
early genes and it is involved in cell proliferation and differentiation,
cell cycle regulation and apoptosis (Chai and Tarnawski, 2002; Miano,

2003; Miano et al., 2007; Treisman, 1992). The SRF is involved in many
pathways such as the mitogen-activated protein kinase pathway
(MAPK) and plays a vital role in development of the embryo and growth
of skeletal muscle (Chai and Tarnawski, 2002; Miano, 2003; Miano
et al., 2007; Treisman, 1992).

The last identified hub gene, STAT3, also called signal transducer
and activator of transcription 3, is a member of STAT transcription
factors family. The rat STAT3 has a complex gene structure with 24
exons that result in 3 isoforms. The STAT3 is widely expressed in rat
organs. The highest expression level of STAT3 was in the heart, while
the lowest expression level was found in brain and testis (Fig. 8).
Member of STAT transcription factors family relay signals from plasma
membrane receptors to the nucleus and regulate transcription of target
genes. In response to cytokines and growth factors, STAT3 is phos-
phorylated and regulates the expression of genes involved in many vital
processes, including cell proliferation and differentiation, apoptosis,
immune responses and tumor angiogenesis and metastasis (Cheng et al.,
2003; Jing and Tweardy, 2005; Johnston and Grandis, 2011; Levy and
Lee, 2002).

As discussed previously, all of the key regulator genes introduced by
this study were important regulatory genes and played pivotal roles in
various cellular processes. Six identified key genes regulate responses,
including response to environmental and physiological stimuli, re-
sponse to oxidative-stress, anti-apoptotic responses, response to in-
flammation, DNA damage and immune responses. Identified genes also
regulate processes such as cell proliferation, cell survival, cell differ-
entiation, cell cycle, apoptosis, cadherin-mediated cell-cell adhesion,
glucose metabolism, lipid metabolism, fatty acid storage, adipogenesis,
adipose tissue formation, tumor angiogenesis and metastasis. These key
regulatory genes also play vital role in signaling pathways such as the
Wnt signaling pathway and MAPK pathway.

In the current study for the first time, we reported six key regulatory
genes associated with pesticide exposure responses. The key regulatory
genes identified in this study could be used for diagnostics or ther-
apeutic aims in further studies. Furthermore, these genes can be used as
toxicity biomarkers to improve diagnosis and prognosis (Lewis, 2011;
Mohammadi et al., 2011).

Fig. 8. Organ-specific expression analysis of six identified hub DE-TF genes. The Y-axis indicates the gene expression levels calculated by the RPKM method in
different rat tissues (X-axis). In each column, the height of blue, red, yellow, purple, pink, and green colors respectively indicates the expression levels of CREB1,
CTNNB1, PPARG, SP1, SRF and STAT3 genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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5. Conclusion

In the present study, we used system biology approaches to identify
the key regulatory genes by investigating data from rat hepatocyte cell
lines under pesticide treatment. We found 205 common DEGs among
pesticides treatment that involved in organelle organization, cell cycle
processes, regulation of cell cycle, catalytic activity, ion binding and
enzyme regulatory activity. These common DEGs also related to can-
cers, digestive system diseases, urogenital diseases, genetic diseases,
endocrine system diseases, musculoskeletal diseases and skin diseases.
Interestingly, six key genes introduced by this study were important
regulatory genes and played pivotal roles in various cellular processes.
The reliable source of data, such as gene regulatory networks, assists to
better understand the function of genes. Identification and character-
ization of key regulatory genes is an opportunity to provide compre-
hensive insights into the relationship between pesticide exposure and
diseases. Although the results of this study provide new information in

assessing the effect of pesticides on diseases, it is also important to
understand the limitations of the methodology. We analyzed tran-
scriptome data of rat hepatocyte cell lines under pesticide treatment to
find common key regulatory genes. Therefore, other rat tissue and
organ have not been investigated and it is difficult to find a compre-
hensive insight. For this reason, it is suggested that transcriptome of
different tissue and organ of rat under pesticide treatment to be ex-
amined. By functional genomics approaches, a comprehensive insight
into relationship between pesticide exposure and diseases and the main
common regulatory network underlying the pesticide exposure will be
available.

6. Compliance with ethical standards

The present research does not involve human participants and/or
animals.

Fig. 9. Results of data validation. Red and blue colors show the up- and down-regulated hub DE-TF genes, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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